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Preface

This volume is part of the ICME-13 Monographs and is a spin-off of the Netherlands
strand of the ICME-13 Thematic Afternoon on “European Didactic Traditions” held
in Hamburg in 2016. In this session, four European countries—France, Italy,
Germany, and the Netherlands—presented their approach to teaching and learning
mathematics in school and in research and development. The session inspired
mathematics didacticians familiar with Dutch mathematics education to reflect on
the approach to teaching and learning mathematics education in the Netherlands and
the role of the Dutch domain-specific instruction theory of Realistic Mathematics
Education. This resulted in two volumes: International Reflections on the
Netherlands Didactics of Mathematics—Visions on and Experiences with Realistic
Mathematics Education and National Reflections on the Netherlands Didactics of
Mathematics—Teaching and Learning in the Context of Realistic Mathematics
Education.

The current volume is the National Reflections book. The volume describes the
Dutch approach to teaching and learning mathematics and is written by Dutch
people. The authors of these “reflections from inside” have in various ways built up
a hoard of expertise on this, either as a mathematics teacher, a mathematics teacher
educator, a school advisor, or as a developer and researcher of instructional
material, textbooks, teaching–learning trajectories, curricula, and examinations and
tests. In 17 chapters, 28 authors reflect on mathematics education in the Netherlands
and when doing this they have a broad scope. Several chapters discuss aspects
of the theoretical underpinnings of the Dutch approach that, starting some 50 years
ago, became rather dominant in the Netherlands, and that is known as Realistic
Mathematics Education. Other chapters go back further in history or use history in
their teaching of mathematics, or zoom in on changes in particular subject matter
domains and in use of technology. One chapter shines a light on the relationship
between Dutch mathematicians and mathematics education. Other chapters give a
glimpse into the process of innovation and how the Dutch and in particular one
Dutch institute have worked on the reform. To place these reflections from inside in
the context of the Dutch educational system, the volume also contains chapters that
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explain how teacher education and testing in mathematics education are organised
in the Netherlands.

Of course, all the chapters in this volume together are not enough to give a full
picture of the Netherlands didactic tradition. Other people might have told other
experiences and might have other views, but the authors of this volume shared their
knowledge about mathematics education in the Netherlands by writing a chapter
about it. Thanks to their inspiring pieces of work, the volume could come into
existence. However, especially instrumental for making this happening was
Nathalie Kuijpers, who together with me checked and double-checked all the texts.
Many, many thanks for this.

Utrecht, The Netherlands
May 2019

Marja Van den Heuvel-Panhuizen
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Chapter 1
A Spotlight on Mathematics Education
in the Netherlands and the Central Role
of Realistic Mathematics Education

Marja Van den Heuvel-Panhuizen

Abstract In this introductory chapter I give a preview of the landscape of issues
concerning mathematics education in the Netherlands and the role of RealisticMath-
ematics Education (RME) that one can come across in this volume, which contains
the reflections of twenty-eightDutchmathematics didacticians on teaching and learn-
ing mathematics in the Netherlands. Although all chapters have their own focus and
mostly only discuss one particular aspect, together they provide a rich inside view
into what is worth knowing of Dutch mathematics education and RME. The pre-
view highlights some significant topics from these chapters, such as what tasks are
preferred in RME to elicit students’ mathematical thinking, RME’s focus on the use-
fulness of mathematics, the role of common sense and informal knowledge, changes
over time in the content of the mathematics curriculum, aspects of the Dutch edu-
cational system, including teacher education and assessment, the implementation of
RME, and the context of developing RME.

1.1 Introduction

The 13th International Congress on Mathematical Education (ICME-13) held in
Hamburg, Germany, in 2016, and in particular the ICME-13 Thematic Afternoon
session “European Didactic Traditions,” was a trigger for Dutch mathematics didac-
ticians to reflect on what is typical for mathematics education in their country. In
this session, the Dutch approach to teaching and learning mathematics in school, in
research, and in development was presented, together with the approaches in France,
Italy, and Germany. The aim of the session was to delve into what the four countries
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2 M. Van den Heuvel-Panhuizen

have in common despite the differences in the cultural, historical, and political cir-
cumstances in which their positions and methods regarding mathematics education
were developed. The common characteristics that came to the fore and that can be
considered as distinctive features of the European didactics of mathematics, were: “a
strong connection with mathematics and mathematicians, the key role of theory, the
key role of design activities for learning and teaching environments, and a firm basis
in empirical research” (Blum et al., 2019, p. 2). These are also the features that recur
in the reflections on mathematics education in the Netherlands as described by the
twenty-eight Dutch mathematics didacticians in this volume. This places the Dutch
didactic tradition inalienably inside the European didactic tradition. Yet within this
overarching European framework, Dutch mathematics education and its theoretical
grounding have their peculiarities. In the Netherlands, the teaching and learning of
mathematics cannot be seen separate from Realistic Mathematics Education (RME),
the domain-specific instruction theory that has determined Dutch mathematics edu-
cation in the last half-century. Therefore, in the reflections presented in this volume,
the defining characteristics of RME have a prominent place. In addition to this,
ample background information is provided about the educational system in which
RME has come into being. In their descriptions, the authors have each their own
focus in addressing particular aspects of mathematics education in the Netherlands,
and of course, their reflections resonate their own views on RME. They gave their
own accentuations and interpretations, which is fully in line with the idea that RME
is not a fixed and unified theory of mathematics education.

As an introduction to this multifaceted portrayal of mathematics education in the
Netherlands and the central role of Realistic Mathematics Education, in this preview
I highlight some of the main thoughts that emerge from the chapters. Underlining
these thoughts does not in any way imply that what is characterised as typical for
the Dutch approach, is unique in the world of mathematics education. All over the
world reforms of mathematics education have taken place and are still happening,
and the innovations in the Netherlands have very much in common with those in
other countries. In this sense the Dutch reformed ideas on mathematics education
are not special.

1.2 The Focus on a Particular Type of Tasks

Several chapters in this volume discuss tasks that should be given to students to elicit
mathematical thinking. Preferably, these are tasks that provide students with oppor-
tunities to creatively solve unfamiliar open-ended problems, to model, structure and
represent problems and solutions, and to work collaboratively and to communicate
about mathematics. Tasks that are exemplary for making this happen are described
by Wijers and De Haan (Chap. 2). Their experience is that such tasks should be rich,
meaning that there is not just one way to come to a solution. Further requirements
are that the solutions can vary in mathematical depth, that the tasks build on knowl-
edge students already have and that they offer students opportunities to extend their
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knowledge. Also important is that higher-order questions are used which ask how
and why, encouraging reasoning rather than getting an answer. In all these require-
ments, the very nature of RME is clearly apparent, but what Wijers and De Haan
also point out is that these requirements not only apply to problems that are close
to the real world, but also to assignments that are situated more within the world of
mathematics. Besides tasks in which students, for example, reason about the produc-
tivity of workers in a factory in connection with the hours they work without having
a break, students also work on tasks in which they have to deal with formulas in a
quite abstract context, such as dots moving on a grid. The latter type of tasks can, in
RME, also be called context problems.

The broad meaning of context problems is clarified in full detail by Vos (Chap. 3).
In her fine-grained categorisation of tasks, she distinguishes, apart from bare tasks
(tasks without contexts), tasks with mathematical contexts (e.g., matchstick pattern
problems), dressed-up tasks (tasks with a pointless question behind which a math-
ematical question is hidden), tasks with realistic contexts (which are experientially
real or imaginable for the students) and tasks with authentic contexts (which use pho-
tos, data, and situations from the real world). What the two last types of tasks have in
common is that the context justifies the questions that are asked and that the answers
to these questions are useful within the described context. For Vos the ‘usefulness’ of
tasks means that they lead to developing the competence and understanding required
for using and applying mathematics in future practices as professional or as citizen.

1.3 Usefulness as a Key Concept

The idea of teaching mathematics to be useful was and is a strong driving force for
developing mathematics education in the Netherlands. Even before there was RME,
Freudenthalmade a strong plea for this idea in his article “Why to TeachMathematics
SoAs to BeUseful” published in 1968 inEducational Studies inMathematics. As De
Lange (Chap. 17) underlines, at the time of the rise of NewMath—which was around
the late 1960s—this was a very relevant question. Yet putting usefulness in the centre
of our thinking on mathematics education was not new. The culture of usefulness of
mathematics as a curricular emphasis has already existed in the Netherlands for five
hundred years, and may, according to Vos (Chap. 3), have created a fertile ground
for RME.

Concrete examples of the propensity to adhere to the usefulness aspect of math-
ematics and instances of the deep historical roots of this tendency are presented by
Kool (Chap. 7). Her chapter goes back to Dutch arithmetic education in the 16th
century. In that century, calculations were initially made with coins and a counting
board, but as the result of the more complex trading methods that entered the market
then, this cumbersomeway of calculatingwas gradually replaced by amore advanced
written calculation method. Many manuscripts and books were published to teach
this new method to future merchants, moneychangers, bankers, bookkeepers, and
craftsmen. By means of many tasks about all kinds of commercial transaction and
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other calculations to be done in various workplace situations, students could learn
to solve arithmetical problems of their future profession. This was the main goal
of arithmetic education in those days, which was accompanied by devoting much
attention to memorising rules and recipes, tables of multiplication and other number
relations. When comparing this approach to mathematics education with the current
Dutch approach, Kool concludes that teachers of the 16th and the 21st century both
want to teach their students the arithmetic they need in daily life and their future
profession. As in the 16th century, today’s students in the Netherlands need to have
knowledge about number relations and arithmetical rules, but different is that they
have to learn to apply this knowledge in a flexible way, whereas in the 16th century
it was all about using ready-made solution methods.

The relation between mathematics and its usefulness in real-world situations is
also shown in the teaching experiment on measurement carried out by Van Gulik-
Gulikers, Krüger, and Van Maanen (Chap. 13). What is more, the tasks they have
designed for teaching this topic to eight- and ninth-grade students demonstrate that
the contexts can also date from three centuries ago. The teaching material they used
for this experiment is based on the professional context of aDutch land surveyor in the
18th centurymeasuring the height of buildings and thewidth of rivers. Comparable to
the surveyors in those times, the students had to use the theory of similar triangles. Of
course, nowadays it is common in such situations to useGPS, fromwhich the students
can learn as well, but the experiment showed that using the history of mathematics
as a didactical tool had a positive effect on the students’ motivation and on their
conceptual understanding. In particular, the authors found that the transparencyof this
old-fashionedmeasurementmethodmade discussions aboutmathematics accessible.

1.4 Common Sense and Informal Knowledge

The RME characteristic of connecting mathematics education to reality is closely
related to the reinforcement of the role of common sense and using informal math-
ematical knowledge from daily-life experiences as a starting point for teaching.
Dekker (Chap. 4) calls this ‘the Dutch school’ and describes a silent revolution that
has taken place at this point in the Netherlands. There is a large difference between
what she remembers from the start of her first mathematics lesson as a secondary
school student and what students often hear nowadays. Then it was ‘forget what you
know, here you will learn all sorts of new things’, whereas now the motto is ‘use your
common sense’. Students acquire a lot of mathematical knowledge in the realistic
context of their life, and education should make use of this informal knowledge.
In this respect, Dekker refers to the pioneering work of Ehrenfest-Afanassjewa, a
Russian mathematician who worked in the Netherlands and in 1932 published a
course on geometry based on the idea that students have already developed intu-
itive geometrical notions in reality. These intuitive notions were taken as the starting
point of this course. Dekker describes that many people involved in mathematics
education were shocked by Ehrenfest’s radical ideas. However, this was not true
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for Freudenthal who was impressed by her revolutionary approach, and stimulated
developers of instructional materials to take over these ideas. Also, several other
chapters make a point of this shift in teaching geometry, and mention the important
role of Ehrenfest-Afanassjewa for Dutch geometry education (see Chaps. 5, 9, 11
and 15).

A question that is inevitable here and asks for discussion is where these intuitive
notions and informal knowledge come from, or what common sense is. De Lange
(Chap. 17) gives a first-hand peek into Freudenthal’s thoughts about this, when he
describes a discussion that took place at the Freudenthal Institute between Freuden-
thal and a number of staff members. Freudenthal was writing a new article meant for
what would become his last book. According to the professor mathematics is rooted
in common sense; for example, your common sense reasons that 2 + 3 is 5 and that
the area of a rectangle is h× b. After he said this, the discussion continued. Someone
questioned whether it is really true that ‘2 + 3 = 5’ and ‘area is length × width’ are
common sense. Finally, it was concluded: common sense is local, both in time and
place, and it includes reasoning. Freudenthal mumbled something, not audible for
the others, and decided that he would rewrite his draft.

1.5 Mathematical Content Domains Subject to Innovation

As a constituent of the reform that took place in the Netherlands, the content of the
mathematics curriculum changed in many respects. Several chapters pay attention
to these changes. For example, Doorman, Van den Heuvel-Panhuizen, and Goddijn
(Chap. 15) shed light on the change that happened in geometry education. Here an
axiomatic approach to teaching geometry was gradually superseded by an intuitive
andmeaningful approach focussed on spatial reasoning. Supported by Freudenthal—
whowas in his turn inspired by Ehrenfest-Afanassjewa andVanHiele-Geldof—from
the 1970s on, experiments were carried out within a new content domain, called
‘vision geometry’. Characteristic of this RME-based geometry education is that,
together with the introduction of this new content, the structure of the geometry tra-
jectorywas also changed. Traditionally, the structure in a teaching-learning trajectory
for geometry was provided by a deductive system startingwith formal definitions and
basic axioms. This ‘anti-didactical inversion’ of the learning sequence, as Freuden-
thal called it, means that the final state of the work of mathematicians is taken as
a starting point for mathematics education. In RME, the reverse order is followed,
in which geometry education starts with offering students geometrical experiences
based on observing phenomena in reality. Through explorative activities, geometrical
intuitions develop further, and mathematisation is elicited, resulting in the develop-
ment of situation models like vision lines, which eventually bring the students from
informal to more formal geometry. The concepts and reasoning schemes that emerge
from this ‘local organisation’—again a term introduced by Freudenthal—have the
potential to create, for students in the more advanced levels of secondary education,
the need for axioms, definitions and mathematics as a logic-deductive system.
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Another content domain that was subject to innovation in the Netherlands was
calculus. Kindt (Chap. 14), who takes the reader along the history of how calculus
developed over time, characterises this innovation process as balancing between
conceptual understanding and knowing algebraic techniques—a process which is in
fact indicative for the development ofRMEas awhole. Starting in the 1960s, attempts
have been made to develop calculus courses that start with an introduction that is
meaningful for the students. The ideawas to give students a broadly oriented entrance
to differential calculus by starting with a problem about rate of change in a context
that made sense to the students, such as a cheetah and a horse that were both running.
The students had to answer the question: Does the cheetah overtake the horse? Later
on, this RME approach in which a long conceptual introduction with open tasks
precedes the teaching of algebraic rules, did not always appear in the textbooks,
which were mostly more structured and less challenging than the experimental units.
Nevertheless, the current situation is that important elements of this approach, in
which attention is paid to exploring linear and exponential relationships inmeaningful
contexts with tables and difference diagrams, can still be found in Dutch textbooks.

The implementation of the RME-based reform in lower and pre-vocational sec-
ondary education described by Hoogland (Chap. 11) which began in the 1990s, and
which was meant to move from mathematics for a few to mathematics for all, also
implied many changes in the curriculum. The reform affected all elements of math-
ematics education in secondary schools, including a new and broader curriculum,
alternative ways to approach students, fostering students to develop more and other
skills such as problem solving, and using different assessment formats such as contex-
tual and open-ended problems. Within the domain of algebra, the emphasis shifted
from algebraic and computational manipulation to reasoning on the relationships
between variables and to flexibility in switching between different types of repre-
sentations of relations. In geometry, there was a change from two-dimensional plane
geometry with a strong calculational approach, towards two- and three-dimensional
geometry with a focus on ‘vision geometry’. Numeracy was introduced as a new
domain in secondary education, as were data handling, and statistics containing data
collecting and visualisation to be used in decision making.

Apart from changes in the mathematical content that occur together with a new
RME-based thinking about teaching and learning mathematics, changes, or at least
prompts to rethink the practice and theory of mathematics education, were also
induced by the new technologies that became available for education. This issue is
addressed by Drijvers (Chap. 10), who discusses the relationship between mathe-
matics education in the Netherlands and digital tools. He shows what it means to
implement new technologies in RME-based education and concludes that the match
between the two is not self-evident. Technology puts the teaching of mathematics in
another perspective. Among other things, Drijvers points out that the phenomena that
in RME form the point of departure for the learning of mathematics may change in a
technology-rich classroom. Also, the teaching approach of guided reinvention may
be challenged by the often rigid character of the digital tools. And finally, the use of
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digital tools for higher-order thinking was found to be more complex than foreseen.
According to Drijvers, to realise mathematics education as intended by RME, it is
necessary to have a digital mathematics environment that allows the teacher to design
open and engaging tasks, and enables students to explore and express mathematical
ideas in accessible and natural ways.

The complexity of the issue of what mathematics should be taught, and changing
ideas about this are signified by Treffers and Van den Heuvel-Panhuizen (Chap. 15)
by retracing the content of the domain of number in two centuries of Dutch primary
school mathematics textbooks. In their chapter, in which they cover the period from
1800 to 2010, they describe the longitudinal process featuring seemingly inevitable
pendulum movements of procedural versus conceptual textbooks. Generally speak-
ing, in the procedural textbooks the focus is on practising calculation procedures with
less attention paid to conceptual understanding of number. Operations have to be car-
ried out in a fixedway. Smart, flexible (mental) calculations and estimating aremostly
absent in this approach. Finally, in the main, applications are not used until the very
end of the teaching trajectory. The RME-based textbooks that appeared in the 1980s
belong to the conceptual textbooks, and are the opposite of the procedural textbooks.
Although the distinction between these two textbook types is rather coarse-grained,
in most cases, RME-based textbooks start teaching in the domain of numbers and
operationswith applications and the use of contexts that evolve intomodels to support
the development of calculation strategies. Number sense, number relations, flexible
(mental) calculation, and estimation have a central place in the programme next to
algorithmic calculations, which are introduced by transparent predecessors of the
algorithms. This means, for example, that the digit-based algorithm of long division
is prepared through a whole-number-based repeated subtraction approach. Contrary
to the commonly held thought that mathematics education of some 100 years ago
implies a traditional approach to teaching which focusses on drill-and-practise and
fixed rule-governed solution strategies, the analysis of two centuries of mathematics
textbooks reveals that this assumption is not correct. Already in 1875, Versluys, a
mathematics educator who is considered the founding father of the Dutch didactics
of mathematics, published a textbook in which the focus was on insightful, self-
inquiry-based learning of mathematics within a whole-class setting guided by the
teacher. Also, the way Versluys treated calculations up to one hundred has a lot in
common with how this is now dealt with in RME textbooks. Furthermore, to a cer-
tain degree similar to RME, Versluys’ textbook series contains a large amount of
word problems and a rather small number of bare number problems. For Versluys,
arithmetic is in the first place applied arithmetic. Again, the deep roots of RME are
shown here.What is now considered new in some forums (and is therefore sometimes
rejected) is, in some way, in essence not new at all. This is also enlightened by Kool
(Chap. 7).
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1.6 The Systemic Context of Dutch Education

To comprehend the nature of a country’s mathematics education, it is necessary to
view this education in its national context and have knowledge about how that coun-
try’s school system is structured, how teachers are educated, how assessments and
evaluations are organised, what the role is of the government and the institutions that
deliver support services to schools, what the contribution is of teacher associations
and what the position is of the publishers of educational material. It goes beyond this
volume to give a complete picture of the Netherlands for all these systemic issues,
but two issues which are specifically addressed are teacher education (in Chap. 8 by
Oonk et al. and in Chap. 9 by Daemen et al.), and assessment in mathematics edu-
cation (in Chap. 16 by Scheltens et al.). Furthermore, spread out across the volume
other aspects of how education is organised in the Netherlands are also discussed.
Without being exhaustive, it can be mentioned that information is provided about:
the school system of the Netherlands (in Chap. 9 by Daemen et al. and in Chap. 11
by Hoogland), the different mathematics curricula for different school levels (in
Chap. 2 by Wijers et al., Chap. 3 by Vos, and Chap. 11 by Hoogland), examination
in secondary education (in Chap. 2 by Wijers et al. and in Chap. 14 by Kindt), the
textbooks that are used (in Chap. 3 by Vos and in Chap. 6 by Treffers et al.), and
about governmental committees and teacher associations (in Chap. 5 by Smid).

If we look at teacher education, we see a dynamic relationship between the
approach to educating teachers and the reform movement in the Netherlands. This
particularly applies to the primary school level of mathematics education, because
primary school teacher educators were heavily involved in the development of the
reform. Therefore, parallel to the changes in primary mathematics education, the
curricula of primary mathematics teacher education have drastically changed since
the 1970s. What this change means is thoroughly outlined by Oonk, Keijzer, and
Van Zanten (Chap. 8). They point out that, with respect to mathematics, primary
school teacher education, where students are educated to teach all subjects in pri-
mary school, can be characterised as including both a focus on the interconnection
between mathematics and didactics, and on the integration of theory and practice.
What is more, the developed teacher education theory for primary school mathemat-
ics teacher education is largely in line with the RME theory for teaching students in
school. This parallelism comes to the fore in the approach to teaching teacher students
and teaching students in primary school. For both, concrete mathematical situations
are taken as a starting point. For primary school students it means to activate their
intuitive notions and start with informal procedures, which, under the guidance of
the teacher, can evolve to more formal mathematics. The teacher students start their
learning to teach mathematics by carrying out mathematical activities at their own
level. Subsequently, their own experiences in learning mathematics are combined
with reflections on the learning processes of students. Together, these give them a
basis for teaching mathematics. By analysing and discussing real teaching practices
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and describing their own reflections on these practices, student teachers are prompted
to use theoretical ideas and terminology from the didactics of mathematics, and teach
mathematics in a professional way. As a result, practical knowledge can develop into
so-called ‘theory-enriched practical knowledge’.

Compared to primary school teacher education, teacher education for secondary
mathematics teachers is far more complex. In this respect, the overview given by
Daemen, Konings, and Van den Bogaart (Chap. 9) speaks volumes. Although in one
respect secondary teacher education is less complicated than teacher education for
primary school, because the focus can be on one subject, the complicating factor
comes with the situation that in secondary education there are different school levels
and different types of schools, including general education and all kinds of vocational
education. This means that there are different routes for qualifying as a secondary
educationmathematics teacher. For the highest levels of secondary education student
teachers go to university. For the other levels they go—like most student teachers
for primary school—to colleges for higher vocational education, nowadays called
universities for applied sciences. All school levels have their own teacher education
programme, which has to prepare student teachers for teaching secondary school
students of different capability levels and teaching, to a certain degree, different
mathematical content. To prevent the learning process to be too fragmented, much
effort is put into working with profession-related tasks which follow a ‘whole-task’
model. Such a task could include, for example, designing a lesson or a test, or
designing a lesson series that one has to carry out. Through these profession-related
tasks, the aim is to achieve coherence between theoretical courses and practice-
oriented activities.

A determining element of the systemic context of Dutch education is the system of
assessment and evaluation. This is highlighted by Scheltens, Hollenberg, Limpens,
and Stolwijk (Chap. 16), who are affiliated to Cito, the Netherlands national institute
for educational measurement. In their chapter, they provide an outline of the tools
that are available in the Netherlands for informing schools, teachers, and students
about the learning achievements in mathematics for both formative and summative
purposes. They describe the content and goals of the various national primary and
secondary standardised tests, and illustrate their descriptions with samples of test
items. Moreover, they also include examples of examination tasks, for which they
also offer the marking guidelines. The overview shows that the picture of official
assessment in the Netherlands—that means the assessment commissioned by the
government—looks rather diverse. The tests and examinations contain context-based
open tasks, but also multiple-choice tasks and bare mathematical tasks. Similarly to
what can be seen in the textbooks, the reality of assessment shows a quite moderate
version of the big ideas of RME. This, again, is an act of balancing between different
approaches to mathematics education and between different interpretations of RME.
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1.7 The Implementation of RME

Although the government to a certain degree facilitated the development of RME
by establishing institutions and commissions and by giving grants for projects for
doing research on mathematics education, developing new instructional materials,
and organising professional development for teachers, the reform cannot be labelled
as a government-instigated enterprise. This is at least not the case for primary school
mathematics education. In secondary education, there was more government inter-
ference in connection with decisions made about the central examinations at the end
of secondary school.

A major government-paid implementation project in lower and pre-vocational
secondary education taking place in the 1980s and 1990s is described by Hoogland
(Chap. 11). In this project, the Ministry of Education made funds available for pilot
schools and the development of experimental teaching materials, as well as making
possible the change of the formal curriculumand the final examinations for secondary
vocational education in the examination year 1996, which they did with broad sup-
port from parliament. For the teachers in the pilot schools, the most common way
to communicate the curriculum changes was through discussing exemplary tasks of
the final examinations and comparing ‘old’ tasks with ‘new’ tasks. Characteristic of
the whole implementation project was the broad involvement of all relevant stake-
holders. In addition to teachers, students, parents, editors, curriculum and assessment
developers, teacher educators, publishers, media and policy makers were also part of
it, and a continuous and extensive dialogue took place among them. Also, the spirit
of that time was an important factor in this implementation process. In education and
society there was a general feeling that change was necessary. There was an agreed
focus on equity and basic education for all, including mathematics, and at the same
time there was a commitment not to waste the human potential in mathematics, in
particular not that of girls. Another factor that contributed to the implementation was
the use of so-called ‘advocate teachers’. These were teachers at the pilot schools
who acted as advocates for the reform and had an important role in the professional
development activities. Other important change agents were the in-service and pre-
service teacher education institutions, the publishers, and the education inspectorate,
who all supported the chosen vision or were at least benevolent to the change. As
Hoogland indicates, the intended changes have proven to be quite sustainable, since
the current mathematics textbook series and final examinations still reflect essential
tenets of the original vision. At the same time, however, he makes it clear that the
change is very vulnerable, by referring to the debate and the framing in social media
that started in the first decade of this century, which claim that the educational change
in the 1990s is to blame for the alleged low level of mathematics of today’s students.

Besides large projects purposely set up to introduce RME in school practice,
Wijers and De Haan (Chap. 2) illustrate that extra-curricular mathematics competi-
tions and events, such as the Mathematics A-lympiad, the Mathematics B-day, the
Lower-Secondary-Mathematics-Day, and theNationalMathematics Day for primary
education, can also form a springboard for innovation. For example, when teachers
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have to prepare their students for the Mathematics A-lympiad competition by giving
them opportunities to get experience in working in groups on rich open-ended unfa-
miliar problems which require mathematical reasoning and modelling, the influence
can also work in the other direction. Experience with these competitions which con-
tain other types of problems than the regular textbook problems can prompt teachers
to change their regular teaching of mathematics. This means that in this way these
competitions and events can become an implementation instrument.

Speaking about ways to implement RME raises the question of what was accom-
plished of the ideas of RME in Dutch classrooms. Similar to other questions that can
emerge when thinking about mathematics education in the Netherlands, this volume
cannot give a full answer. In general, most authors indicate that the ideas of RME are
unmistakably recognisable inDutchmathematics education, but in a number of chap-
ters, there are also clear concerns about deficiencies in the implementation. One thing
that is rather often mentioned is the difference between what are considered good
tasks to elicit mathematical thinking in students and the tasks which can regularly
be found in textbooks, the production of which is left to the market in the Nether-
lands. As Wijers and De Haan (Chap. 2) describe, if open problems are included in
textbooks, these mostly refer to the core content of the lesson or the chapter at hand.
This means that students do not need to model the problem situation to find a strategy
for solving the problems, because the strategy is the one that has been treated in the
chapter. The findings of Vos (Chap. 3) when she analysed a textbook chapter and a
sample of examination tasks also highlighted that quite a number of tasks in the text-
book were dressed-up tasks offering students training to find formulae. Also, many
artificial contexts were used, which contrasted with the finding that the examination
tasks contained authentic contexts more often. The difference between what RME
stands for and what is offered in textbooks was already clearly brought to the fore
in the first decade of this century, when it was found that primary school textbooks
mostly contain straightforward calculation problems and that opportunities for real
problem solving and mathematical reasoning are almost completely lacking. To the
same conclusion Gravemeijer (Chap. 12) came. He observed that advanced concep-
tual mathematical understandings are not formulated as instructional goals, neither
in the textbooks, nor in official curriculum documents, and that textbooks capitalised
on procedures that can quickly generate correct answers, instead of investing in the
underlyingmathematics. It is clear that the ideal situation differs fromwhat is actually
realised in reality!

This discrepancy also applies to another essential requirement that should be
fulfilled in order to realise RME in practice and bring it to fruition, namely a change
in classroom culture. One of the cornerstones of RME is that a learning environment
should be created that makes guided reinvention possible, in which students can
come up with their own solutions and discuss these with other students. Offering
students rich open-ended problems that they canwork on collaboratively and through
which they have opportunities to express their thinking, only works when there
is a classroom atmosphere which really stimulates students to communicate about
mathematics. Implementing RME in class requires that justice is done to RME’s
activity principle (treating students as active participants in the learning process) and
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its interactivity principle (using interaction to evoke reflection and bring students to
a higher level of understanding).

However, as indicated by some of the authors, this RME classroom culture has
not been entirely successfully implemented. Kool (Chap. 7) explains that in practice
it has turned out that it is quite challenging to stimulate students to join actively in
interactive problem solving and reasoning, and it places high demands on teachers.
Providing students with ready-made solution methods will no longer do. Instead,
teachers have to ask their students thought-provoking questions such as “Why does
thiswork?” and “Does it alwayswork?”.At the same timehowever, the teacher should
work on a classroom atmosphere in which the students feel confident enough to
explain and justify their solutions, to try andunderstandother students’ reasoning, and
to ask questions when they do not understand something, and challenge arguments
they do not agree with.

Also, Van Gulik-Gulikers et al. (Chap. 13) experienced in their teaching experi-
ment about the 18th century land surveyor that the studentswere not used to a situation
in which they had to delve deeply into problems that requiremore fundamental think-
ing, broader exploration and endurance. According to Van Gulik-Gulikers et al., this
unfamiliarity with such problems may be because, in their regular classes, students
often work independently in their textbook, which makes that these complex tasks
are often skipped or split into a number of small parts that are easy to digest. This
kind of practice is not what one would expect when thinking of RME-based teaching.

The strongest concern about the implementation of a new classroom culture as
one of the core aspects of RME is voiced by Gravemeijer (Chap. 12). Also, he
thinks that the innovative point of RME to offer students an inquiry-oriented learning
environment with many opportunities for interaction and collaboration did not have a
systematic elaboration at classroom level. Based onwhat recent research has revealed
about the instructional practice in the Netherlands, according to Gravemeijer the
question can even be asked how RME actually works out in Dutch classrooms. For
him the solution is that RME should adopt a socio-constructivist approach.

1.8 The Context of Creating a New Approach
to Mathematics Education

In theNetherlands, compared to other countries, the reformofmathematics education
that started at the end of the 1960s and eventually resulted in RME was mainly a
bottom-up process with low government interference. That this reform happened
in this way is in essence a consequence of the Dutch constitutional ‘freedom of
education’ that is laid down in theConstitution of 1917. This lawwas originallymeant
to give parents the right to found schools in accordance with their religious views.
Nowadays, this law implies also that schools can be founded based on particular
pedagogical and instructional approaches.Another result of this freedomof education
is that the government is rather hesitant in giving instructional prescriptions. In
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fact, the Ministry of Education can only prescribe the subject matter content to
be taught and not the way in which this content is taught. This means that textbook
authors and publishers havemuch opportunity to include their ownviews and ideas on
teaching mathematics. Moreover, there is no authority which recommends, certifies
or approves Dutch textbook series before they are put on the market.

What is also different in theNetherlands than inmost other countries is the position
ofmathematicians.As is clearly underlinedbySmid (Chap. 5),Dutchmathematicians
have a rather problematic relationship with mathematics education. This means that
on this point the Netherlands deviates from what is considered a distinctive feature
of the European tradition. Except for Freudenthal, mathematicians did not have a
determining role in the mathematics curriculum. From the 1970s on, the role of the
mathematicians and their organisations in schoolmathematics wasminimal, and they
hardly seemed interested. This changed only in the first decade of this century, when
mathematicians discerned a lack of algebraic skills in first-year university students.
Moreover, due to unsatisfactory achievement scores of Dutch primary and secondary
school students in national and international studies, a public debate emerged about
the quality of education, which caused that the government took onmore of a steering
role. One measure that was taken to assure that all students acquired a certain basic
level in mathematics and particularly in arithmetic, was that the government decided
that both secondary education students and primary school teacher students had to
do a compulsory arithmetic test. Furthermore, recently the Ministry of Education
installed a platform and a number of development teams with representatives from
primary and secondary education for enacting a society-broad reconsideration of
what students should learn in school to equip them for the future society, their later
profession and their personal development. Asking people from school practice,
along with other experts, to think about the future curriculum is again a kind of
bottom-up approach, yet it is different from what begun half a century ago.

The reform that started at the end of the 1960s was in many ways a child of its
time. Just as the society of that time was ripe for a change, meaning that the existing
values and way of living were turned upside down, the renewal of Dutch mathe-
matics education also showed characteristics of a certain anarchist stance. In the
initial period of the reform, this manifested itself for example in the production of
texts in which an alternative spelling was used. ‘Equivalentie-klassen’ (equivalence
classes) became ‘ekwivalentie-klassen’ and ‘mate van exactheid’ (degree of exact-
ness) became ‘mate van eksaktheid’, and capitals were left out in names and titles
of books and chapters. This atmosphere of wanting to be innovative that was char-
acteristic for IOWO (Institute for the Development of Mathematics Education) and
OW&OC (Mathematics Education Research and Educational Computer Centre) has
lingered long in the Freudenthal Institute. De Lange’s (Chap. 17) reflection unmis-
takably shows the traces of this ambiance. He characterises the institute as different,
sometimes provocative, but often innovative with vision and carefully bombarding
the Ministry of Education with an array of novel ideas such as new curricula, new
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software, mathematics for all, A-lympiads, cutting edge conferences, and interna-
tional collaboration. In the words of De Lange, there was never a dull moment. In this
way the Freudenthal Institute and its predecessors were for a long time the epicentre
of the reform, with Freudenthal as the authority to make it all happen.

Reference

Blum, W., Artigue, M., Mariotti, M. A., Sträßer, R., & Van den Heuvel-Panhuizen, M. (Eds.).
(2019). European traditions in didactics of mathematics. Cham, Switzerland: Springer Nature.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 2
Mathematics in Teams—Developing
Thinking Skills in Mathematics
Education

Monica Wijers and Dédé de Haan

Abstract Mathematics is more than just basic skills. Mathematical thinking should
be an important aspect of mathematics education. In the Netherlands, higher-order
thinking skills like mathematical problem solving, reasoning, modelling and com-
municating mathematics have been part of the examination program since 1989.
To assess these skills in an authentic and open way, the Mathematics A-lympiad, a
competition for teams in upper secondary school, was designed. Shortly hereafter a
Mathematics B-day was developed which showed that open-ended tasks for teams
can also be designed within the domain of pure, formal mathematics. As a result of
the success of the Mathematics A-lympiad, similar activities have been created for
lower secondary and for primary school. The Mathematics A-lympiad assignments
fulfil specific requirements, such as being accessible for all students, eliciting math-
ematical thinking and providing opportunity for different strategies and solutions.
In the wake of these events more attention is paid to higher-order thinking skills in
regular mathematics education as well.

2.1 Introduction

To survive in modern society, the emphasis of education should be on learning
what to do with knowledge, rather than on what knowledge to learn—this shift is
referred to as the essence of 21st century skills (Silva, 2009). It implies a focus on
skills like critical thinking, problem solving, inquiry, creativity, communication and
cooperation. These skills are not only related to the 21st century, however. Problem
solving and mathematical thinking have been part of mathematics education in
several countries around the world for decades (Törner, Schoenfeld, & Reiss, 2007).
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Since 1989, there has been a radical change in thinking about the question ‘what
mathematics for whom?’ in upper secondary pre-university education in the Nether-
lands. This resulted in two different types of mathematics curricula: Mathematics A
and Mathematics B. Mathematics B with calculus as core component, is suitable for
students who will attend scientific/technical/mathematical (STEM) studies; Mathe-
matics A with core topics discrete mathematics, statistics and probability and a little
bit of calculus, is meant for students who prepare for academic studies in social or
economic sciences. More important however than the differences in topics in these
two types of mathematics curricula, were the different and new ideas that guided the
design of Mathematics A.

Mathematics A is intended for students who will have little further education in mathematics
in their academic studies, but who must be able to use mathematics as an instrument to a
certain extent. In particular, we have in mind those who have to prepare themselves for the
fact that subjects outside the traditional sciences are more frequently being approached with
the use of mathematics. This means that students must learn to be able to assess the value of a
mathematically tinged presentation in their education. To do this they must become familiar
with the current mathematical use of language, with formulations in formula language, and
with divergent forms of mathematical representation. Furthermore, they must learn to work
with mathematical models and be able to assess the relevance of these models. (HEWET
report, 1980, p. 19)

The emphasis inMathematics A is on applying mathematics and on the process of
modelling and problem solving,more than on the product. This has greatly influenced
the type of problems. Instead of just formalmathematical tasks, inMathematicsA real
life situations are used as a context for mathematical modelling and problem solving.
Some of the contexts also guide students to develop and reinvent mathematical tools
and concepts. In Fig. 2.1 the context of the helix of a propeller is used to introduce
the concept of the sine graph (Lange, 1982).

Since this shift in 1989, several curriculum changes have been implemented in
Dutch education. As a result, a focus on mathematical thinking and reasoning is
visible in all standards formathematics in primary education (Wit, 1997) and in lower
secondary education (Bos, Braber, Gademan, &Wijk, 2010) and in the examination
syllabi for upper secondary schools.

This focus has been inspired by the view on the teaching and learning of math-
ematics in the Netherlands which was initiated in the early 1980s and has evolved
as the theory of Realistic Mathematics Education (RME) (Heuvel-Panhuizen, 1998,
2000).

Although general mathematical (thinking) skills, and more broadly 21st century
skills, are considered important in society and in mathematics education, it is not
easy to realise these in educational practice. The teaching and assessing of problem
solving,mathematical modelling, communicating and critical thinking requires other
types of problems than the regular textbook problems. Furthermore, it needs a teacher
facilitating the process, rather than just explaining mathematical concepts. In the
following section, we will describe how these other types of problems came into
being.



2 Mathematics in Teams—Developing Thinking Skills in Mathematics … 17

Fig. 2.1 Developing the concept of sine (Lange, 1982)
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2.2 The Emergence of Mathematics in Teams to Develop
Mathematical Thinking

Although RME can be seen as the leading approach on learning and teaching math-
ematics in the Netherlands since the 1980s (Heuvel-Panhuizen, 2000), an ever-
changing balance exists—especially in assessment—between the emphasis on prob-
lem solving and using mathematical thinking skills on the one hand and reproducing
basic skills (knowledge and procedures) on the other hand. Being an institute focus-
ing on innovation, the Freudenthal Institute (FI) aims to keep mathematical thinking
at the heart of mathematics education and assessment. This needs to be done within
the—also changing—constraints of the central examination programs and curricula
for higher secondary education and the core standards and curricula for primary and
lower secondary education. In this section, we present a brief historical overview
of the way in which assessment of problem solving and mathematical thinking has
been put into practice in theNetherlands.We focus on secondary education, but when
appropriate we discuss similar developments in primary education.

2.2.1 Secondary Education

When the Mathematics A curriculum was formally introduced in 1989, the need for
changes in assessment was felt. The emphasis on higher-order mathematical skills,
mathematical modelling and the use ofmathematics to solve real world problems had
to be reflected in the assessment ofMathematics A as well. Furthermore, cooperating
and problem solving in small groups was seen as an important aspect ofMathematics
A, since it would contribute to the development of communicating and mathematical
reasoning. In the research on the pilot of the small-scale implementation of Mathe-
matics A it was found that working in groups added to the quality of the process as
well of the product (Lange, 1987). This is in line with later findings from research
by Dekker and Elshout-Mohr (1998), which showed how working in small groups
on mathematical problems stimulates mathematical level raising for each individual
group member.

The written central examination did not seem the appropriate way to assess these
higher-order skills. Although this examination is made up of problems in context, the
questions are often closed and focussed on specific mathematical skills. Modelling
and problem solving are hardly ever needed, and teamwork is not possible.

In 1989 a pilot was carried out to design a different type of open assignment for
teams of students, to assess the new goals of Mathematics A. This resulted in the
Mathematics A-lympiad, a mathematical real-world-problem-solving competition
for teams, as a way to assess what we now call ‘21st century skills for mathemat-
ics’ in an authentic open way. Since the first pilot in 1989 this competition, which
consists of two rounds—a qualifying preliminary round in the participating schools
and an international final round taking a whole weekend in a conference centre—has
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been organised yearly. All assignments are designed by the Mathematics A-lympiad
committee, a committee residing at the FI consisting of teachers, teacher educators,
mathematicians and educational designers.

Participation has grown from14 schools in 1989 to over 170 schools in 2007. Since
then there is a slow but gradual decline resulting in about 100 participating schools
in 2014, which is about 15% of all upper secondary schools in the Netherlands. At
each school, an average of 40 students—10 teams of four students—participate.

In 1999 the curriculum for Mathematics B—aimed at students with ambitions
to continue in STEM studies—was changed to include more modelling and appli-
cations. This was a result of a larger educational reform, in which new standards
were formulated for all subjects. Higher-order thinking skills were also included in
Mathematics B. The curricular changes implied that these skills should be assessed
in school examinations, through big, mostly open-ended tasks or projects, of which
at least one should be done by a group of three students. Because schools were
already familiar with the assignments of the Mathematics A-lympiad, Mathematics
B teachers asked for a similar assignment for their students, and this resulted in the
Mathematics B-day. The experiences with the assignments of theMathematics B-day
showed that open-ended tasks for teams can also be designed within the domain of
pure, formal mathematics.

Participation in theMathematics B-day rose fast from22 schools in 1999 to almost
160 in 2010. Since then we have seen the same phenomenon as for the Mathematics
A-lympiad: a slow but gradual decline, resulting in 110 participating schools in 2014.
The participation of schools in the Mathematics A-lympiad and in the Mathematics
B-day is illustrated in Fig. 2.2.

The decline in participation in both competitions (which have no overlap in par-
ticipating students) started around 2007 when a new curricular change led to more
emphasis on basic algebraic skills—both in Mathematics A and Mathematics B.
At the same time the explicit link between the choice for a type of mathematics
(A or B) and the overall orientation on future studies was abandoned, as well as
the obligation to include at least one big open-ended task in a school examination.
Also, the recent renewed emphasis on mathematical thinking in the curricula, as
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well as in the assessments for upper and lower secondary education (Commissie
Toekomst Wiskundeonderwijs, cTWO, 2012) has not yet led to a higher partic-
ipation rate in both competitions. However, to ensure more continuous attention
for the development of students’ mathematical thinking during their full secondary
education, in 2012 the FI started to design an activity similar to the Mathematics
A-lympiad and the Mathematics B-day for lower secondary education (Grade 9): the
Lower-Secondary-Mathematics-Day.

2.2.2 Primary Education

For a long time, RME has had a significant influence on mathematics curriculum
standards as well as on the textbooks in primary education. However, despite this,
the focus in the commercial textbooks is not on mathematical thinking and reasoning
(Kolovou, Heuvel-Panhuizen, &Bakker, 2009). To counter this approach and present
primary school teachers and students with a different and broader view onmathemat-
ics, in 2003 the Grote Rekendag1 for primary education was initiated. This is a full
day with thematic mathematical activities for students in all grades in primary school
(for students aged 4–12). The open activities are mostly performed in small groups
and ask for inquiry and creativity by students and focus on mathematical thinking,
modelling and communicating. In this respect, the activities are comparable with
those described for secondary education. For primary education however, the Grote
Rekendag is not a competition and instead of one large open assignment it is made
up of a number of smaller activities connected by the theme.

2.3 Characteristics of the Mathematics A-lympiad
and the Mathematics B-day Assignments

In the previous section, we described how various open-ended assignments to assess
mathematical thinking and problem solving came into being. In this section, we will
focus on the characteristics of these assignments and the specific requirements they
need to fulfil in order to do what they are meant to do: elicit students to think math-
ematically, to creatively solve open-ended unfamiliar problems, to model, structure
and represent problems and solutions, to work collaboratively and to communicate
about mathematics.2

1Big Mathematics Day.
2References to similar characteristics can also be found in Dan Meyer’s ‘Three acts’ problem
(http://blog.mrmeyer.com/2011/the-three-acts-of-a-mathematical-story/) and in Lange (1987).

http://blog.mrmeyer.com/2011/the-three-acts-of-a-mathematical-story/
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2.3.1 Example from the Mathematics A-lympiad: ‘Working
with Breaks’

An example of a Mathematics A-lympiad task is ‘Working with breaks’.3 The
complete task is based on one graph only (see Fig. 2.3).

This graph, from a German study, relates the productivity of workers in a factory
to the hours they work without a break. Furthermore, in this model there are some
rules of thumb relating productivity to the length of the break:

– After a break within the first five hours of working (that is non-stop working)
productivity will be back at the level that the productivity was ‘3.5 times the
length of the break’ before the start of the break.

– After a break that is taken after more than five working hours the productivity
will be back at the level that the productivity was ‘3 times the length of the break’
before the start of the break.

The main question that students have to answer for the board of directors of
the company is: how to get ‘maximum productivity’ in the factory by scheduling
breaks in the most effective way. To make calculations easier, the so-called ‘work
production-units’ (wpu) per hour (per worker) are introduced in the assignment with
600 wpu being the maximum productivity.

In the first part of the assignment, students are asked to use the graph and the
two rules of thumb to estimate the productivity for one day, in two conditions:
without a break, and with one break. In the middle part of the assignment, a linear
approximation of the graph is introduced, and students are asked to investigate a

Fig. 2.3 Productivity graph

3This task, from the preliminary round of the Mathematics A-lympiad 2007–2008, can be found at:
http://www.fi.uu.nl/alympiade/en/opgaven2007-2008/WorkingWithBreaks.pdf.

http://www.fi.uu.nl/alympiade/en/opgaven2007-2008/WorkingWithBreaks.pdf
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few different models (working with one break, with more breaks) and extend their
calculations from one day to one week. They also have to work within restraints:
the company production must reach a certain (minimum) number of wpu per week,
and the workers want to have as much free time as possible. The final part of the
assignment asks for at least two well-founded proposals for a daily schedule for the
workers. The workers’ council and the board of directors together must be able to
choose between these proposals, while taking into account:

– The interest of both employer and employee (worker)
– Health and safety rules
– The minimum of 19200 wpu per week.

The health and safety rules are a new, authentic, component in the task, at this
stage. Of course, all consequences, choices and assumptions, must be described and
justified by the teams in their proposals.

Students work on the assignments in teams for one full day and produce a report.
This report is first judged (and sometimes graded as well) by their own teacher.
Then, the best ones are judged by a teacher from a different school or by the jury of
members of the committee. This evaluation results in a winning team.

As said before, the assignments need to be designed in such a way that they
elicit problem solving and mathematical thinking. An important characteristic of the
assignments is that they are new to students, which means that the problems are
non-routine and non-trivial (Doorman et al., 2007). Schoenfeld (2007) states that
these types of problems are needed for problem solving to happen. The absence of
a known procedure forces students to come up with new strategies, that need to be
tested, compared and evaluated. Other requirements of the assignments are that:

– They should be rich, meaning that there is not only one way to come to a solution,
and solutions can vary in mathematical depth

– They should build on knowledge students already have, and extend it
– They should use higher-order questions (how? why?) and encourage reasoning
rather than ‘answer getting’ (Swan, 2005).

Besides general characteristics that elicit problemsolving andmathematical think-
ing, it is important that the assignments are suitable for a competition. An important
condition for a competition is that the teacher has a minimal role. He or she facili-
tates the organisation and the process, but provides no content-related guidance. This
asks for a well-structured, but open assignment. All teams must be able to enter the
problem without help from a teacher, and on the other hand—in order to determine
a winner—the problem has to allow for different approaches and strategies based
on decisions by the students and for solutions that differ in quality. Swan (2005),
when describing characteristics of rich collaborative tasks, speaks of tasks being
‘accessible and extendable’.

The accessibility and extendibility of the assignments for the Mathematics A-
lympiad, which are situated in a real-life context, is realised by a more or less fixed
structure (Haan & Wijers, 2000):
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– The first part is an introduction with some smaller, less open problems to get
to understand the context. This ensures that the assignment is accessible for all
students.

– The middle part often asks for an analysis of data, of a model, or of a solution that
is presented in the assignment.

– The final part asks for creativity in designing, comparing and evaluating a new
approach, system, model, solution or product.

The example ‘Working with breaks’, discussed in this section, illustrates how this
structure is concretised in the assignment.

2.3.2 Example from the Mathematics B-day: ‘How to Crash
a Dot?’

An example of a Mathematics B-day task is ‘How to crash a dot?’4 The assignment
is based on one of the first computer games in the 1970s.

The route of the dot (see Fig. 2.4) is determined by using buttons that make the
dot move in a certain direction (N = north, S = south, E = east, W = west) with
a certain increasing speed. Furthermore, there is a button (P = pass), which means
that the same direction and speed is kept. For example, when E is used the first time,
the dot moves one unit to the east. When you use the button P the next time, the dot

Fig. 2.4 Route of a dot

4The complete task from schoolyear 2009–2010 can be found at http://www.fisme.science.uu.nl/
toepassingen/28174/.

http://www.fisme.science.uu.nl/toepassingen/28174/
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moves in the same direction with the same speed. When you use E again however,
the dot moves two units two the east.

This example makes clear that the assignments for the Mathematics B-day are
situated within the mathematical world itself. Often new mathematical content is
addressed, for which a longer and more guided introduction is needed. Therefore,
in the first part of this assignment, the rules of the game that let students move a
dot along grid points are formulated and students learn how to use the rules. In the
middle part of the assignment students first explore movements in one dimension.
They investigate for example how to use the rules to make a dot move along a
straight horizontal line. Next, the students study movements in both horizontal and
vertical directions. They make use of the results found when exploring movements
in one direction. In the last part three different final questions are formulated, letting
students make a choice between doing all three with the risk that they can only report
superficially on them, or making a wise choice and report fully, carefully and in-
depth. This final part asks for mathematical creativity. Here extendibility is realised
when some of the teams go further and deeper in designing and investigating their
mathematical ideas and hypotheses.

2.4 The Role of the Teacher

The assignments discussed so far are meant mainly for assessment and not primarily
for learning. They are not part of the regular mathematics classes. During the compe-
tition day, the teacher has a very small role. He or she facilitates the process and keeps
the teams going, but has no role in providing help (Dekker & Elshout-Mohr, 1998;
Haan &Wijers, 2000). One could argue, as Kirschner, Sweller, and Clark (2006) do,
that this minimal guidance does not work, but in this case, the aim is not instruction
and the teacher can still give process help.

To prepare teachers for using and grading these open, non-routine large assign-
ments, a workshop is offered each year to all teachers who have students participating
in one of the competitions. In this three-hour workshop, teachers get to know part of
the assignment that will be used later that year. They can work on it in teams them-
selves and discuss with colleagues their experiences, findings and the problems they
foresee. Members of the committee can use the comments to improve the assign-
ments. An important topic in this workshop is how to evaluate and grade student
work. Experienced teachers share their tips and tricks with teachers who are new to
the competition. The workshop proved to be useful for both novice and experienced
teachers: it is a way of preparing for process-guidance during the competition, and
it is a way to get a grip on the core content of the assignments. A teacher said once:

When I don’t know the assignment very well, I tend to ‘help’ students in giving answers
to their questions; attending the workshop helps me in getting a grip on the assignment, so
when a student now asks me about the content, I know what guidance question I can ask to
help them.
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Prior to the competition the teacher has an important role in preparing students for
this type of assignments. The preparation can be done in different ways. One way is
having students practise with old assignments from previous competitions. Although
all assignments are available on the web, this approach is seldom used. The principal
objection is that it takes a lot of time at the expense of the time available for teaching.
To finish one full assignment takes about one whole day, which is equivalent to about
five lessons.

Often teachers give a form of preparation (Dijk, 2014) in which they present
organisational information on how to deal with this type of assignments as a team.
They often have students read one assignment as an example and work on it for
half an hour and then discuss ways of working and the product requirements that are
listed in an addendum to the assignment. Although the assignments are quite different
every year, the criteria for assessing the quality of the reports, and more specific the
higher-order general mathematical skills, are more or less constant–apart, of course,
from the specific mathematical content. The reports are graded based on aspects
such as:

– Quality of argumentation and justification of choices being made
– Use of mathematics
– The (mathematical) creativity in strategies and solutions
– Quality and extensiveness of (mathematical) reasoning and modelling
– The presentation: including form, readability, clarity, completeness, structure, use
and function of appendices.

Teachers can also prepare their students for this type of open assignments in
their regular mathematics classes. They can do so by creating a classroom culture in
which students are used to listening to each other, asking each other questions and
writing down their own thinking before they share it. Teachers who do so also help
students by orchestrating their thinking (Drijvers, 2015) and evoking mathematical
discussions in their regular mathematics classes.

2.5 The Student Perspective

For students in upper secondary the assignment in the competition is often their
first experience with this type of large open problems for teams. Textbooks rarely
offer this type of problems, and if open problems are included in the textbooks they
mostly refer to the core content of the lesson or the chapter at hand, which means
that part of the strategy is known or obvious. In this case less mathematical thinking
is needed and there is no need for creativity and ‘real’ problem solving in the sense
of Schoenfeld (2007).

To illustrate the experiences of the students, somequotes fromstudents, taken from
several reports from different assignments, are presented in Fig. 2.5. These quotes
show that the students discover the fun of doing mathematics, they are allowed to do
their own investigations, and sometimes they surpass themselves and exceed their
teachers’ expectations!
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“This was a special day. We learned things and it was fun. We were free to plan the 
work ourselves. In the introductory task, we tried to explain the methods that were 
presented. After ‘hard thinking’ we understood what was going on. In the 
beginning we were frustrated, but after we found out ‘how it worked’, it became 
much more fun.” 

“In the introductory tasks, we were confronted with mathematics we didn’t fully 
understand. We kept to our initial problem-solving strategies throughout the tasks 
and we believe this led to a very good outcome. By struggling through the 
introductory tasks, we got more and more familiar with the context and the 
mathematics. In the end, we had enough knowledge to complete the final part of 
the assignment.”

“At a certain moment, we understood how everything worked out and from that 
moment on we ‘raced’ through the tasks. Because we had divided the work 
efficiently we could finish the tasks fast and at the same time keep up the fun. [..] 
There was a relaxed atmosphere and we were better at math than we thought and 
that is worth something as well.”

Fig. 2.5 Quotes from students

As discussed in the previous section, teachers can prepare their students in several
ways. A small-scale study on a comparison of schools participating in the Mathe-
matics A-lympiad (Dijk, 2014) showed that students of teachers who put more effort
in creating a investigative classroom culture in which mathematical thinking and
creativity are stimulated and who prepare students by introducing them to the ideas
and goals of the competition are more often among the winning teams of the pre-
liminary round in the Mathematics A-lympiad. In this case the regular classroom
teaching lays a foundation for the students’ higher-order thinking skills and thus for
their successes in the competitions.

The influence can also work the other way around. Experiences with these compe-
titions can prompt changes in teachers’ regular teaching. For example,we noticed that
students who participate in the competition of the Lower-Secondary-Mathematics-
Day (Grade 9), often struggle with the openness of the task. Although the results
do show creativity and mathematical thinking, it is clear that a lot of the students
lack a structured approach of formulating hypotheses and systematically investi-
gating these by varying the variables, constraints, representations, models or other
aspects. For their teachers, this may be a reason to start paying more attention to how
to handle unstructured problems and to stimulate modelling and investigations by
their students. In this respect, the competitions function as an entrance into a more
inquiry-based way of teaching mathematics.
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2.6 The Future of Mathematical Thinking in Secondary
Mathematics Education

As a consequence of the recent curriculum change that was fully implemented in
2017, mathematical thinking activities were embedded in the standards for math-
ematics in upper secondary (cTWO, 2012). Never before have these higher-order
thinking skills been described in the standards in such detail. They are characterised
in connection to the content domains and include:

– Modelling and algebraisation
– Ordering and structuring
– Analytical thinking and problem solving
– Manipulating formulas
– Abstracting
– Reasoning and proving.

Although the assignments of the mathematical competitions stimulate mathemat-
ical thinking, they do not reach all students and teachers. It is not always possible
in a school to dedicate a full day to mathematics, in which the content may even be
outside the core curriculum. Furthermore, to really implement mathematical think-
ing for all students and help them develop the appropriate skills this should be part
of the regular curriculum, which means that suitable assignments and problems are
needed that fit within regular 50-min mathematics lessons. To realise this, two move-
ments are currently ongoing: textbooks authors start inserting so called ‘mathematical
thinking problems’ in their textbooks, but since it takes time until a new generation
of textbooks is published, mathematics teachers themselves also design problems,
often as a result of professional development on this topic. These problems are often
smaller, open problems, that are non-routine and evoke students’mathematical think-
ing, reasoning and creativity and that help students and teachers to make the shift
towards ‘relational understanding’ of mathematics, instead of keeping the focus on
the (more common) ‘instrumental understanding’ (Skemp, 1976). An example of
such a problem, designed by a teacher,5 is presented in Fig. 2.6.

Usually in the textbooks the scale of the axes is given, and students have to come
up with the formula using this information. In this problem, students have to show
understanding of the concept of the linear formula, in order to find out the scaling of
the axes.

All in all, we may conclude that the time seems right for a shift in mathemat-
ics education towards a more inquiry-based 21st century fitting approach. Not all
requirements are met, of course, but the necessary conditions seem to be estab-
lished: standards, examinations, textbooks and teachers are being prepared for such
an approach. Professional development of teachers is organised, inwhichmathemati-
cal thinking activities are designed and implemented by teachers in their classrooms.
In these courses, they learn how to implement a classroom culture in which they

5Egbert Jan Jonker, mathematics teacher at Roelof van Echten College in Hoogeveen, the
Netherlands.
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In the figure, you see the graphs of f and g. 

y = -15x + 120 belongs to the graph of f. 

Which formula belongs to the graph of g? 

Fig. 2.6 Problem that stimulates mathematical thinking

stimulate mathematical thinking and problem solving. Research into mathematical
thinking is carried out and is disseminated in journals and in research-meets-practice
conferences. Especially dissemination of research through databases with assign-
ments and guidelines for teachers (in text and through videos) are used to increase
the incorporation of mathematical thinking activities in the classroom.

The assignments for teams discussed in this chapter will cause the stream of
development of mathematical thinking to continue flowing. We hope this stream will
grow, supported by classroom environments with the right tasks and the appropriate
teacher and student attitudes.
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Chapter 3
Task Contexts in Dutch Mathematics
Education

Pauline Vos

Abstract This chapter offers a description of task contexts inmathematics education
in the Netherlands. International comparative studies show that the Dutch average
percentage of mathematics tasks with real-life connections per lesson exceeds any
other country by far. This tradition goes back more than 500 years, when the earliest
mathematics textbooks in the Dutch language consisted entirely of tasks set in com-
mercial, naval and building contexts. To analyse and characterise the task contexts,
I use the notion of usefulness, which is a perception by students on future practices
outside school. A distinction is made between bare tasks (without contexts), tasks
with mathematical contexts (e.g., matchstick pattern problems), dressed-up tasks
(hiding a mathematical question), tasks with realistic contexts with questions that
are useful within the context, and tasks with authentic contexts. The empirical part of
this chapter contains an analysis of a mathematics textbook chapter and a sample of
examination tasks. This analysis shows that Dutch mathematics education contains
many links to real-life, which is not just verbally presented, but also visually with
drawings, photos, diagrams and other visualisations. The contexts are drawn from
a wide spectrum of areas in real-life, reflecting that mathematics can be found any-
where in society. The examinations containmore authentic aspects than the textbook,
and the higher-level examinations have more authentic aspects than the lower-level
examinations. Nevertheless, contexts both in the examinations and in the textbook
can still be artificial, with questions which would not be asked by actors within
the context. Task contexts often come from recreational or professional practices,
demonstrating to students the usefulness of mathematics in their future lives beyond
school.
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3.1 The Prevalent Use of Real-Life Contexts in Dutch
Mathematics Tasks

In 1999, an international study was carried out in which teaching practices in math-
ematics classrooms at Grade 8 level in seven countries were analysed: the TIMSS
Video Study (Hiebert et al., 2003). The participating countries were Australia, the
Czech Republic, Hong Kong, Japan, the Netherlands, Switzerland and the United
States. In each country 84 random lessons were video-captured, transcribed and
quantitatively analysed. The report offers many tables and bar graphs with descrip-
tive statistics for a variety ofmathematics classroomaspects.We can see, for example,
the percentages of lessons in each country in which the teacher made a goal state-
ment or summarised the taught content, the amount of time spent on whole-class
discussion, the role of homework, the complexity of the taught mathematics content,
the type of reasoning asked in the activities, and so forth. The chapter “Instructional
Practices: HowMathematics wasWorked On” contains findings on themathematical
procedures used to solve tasks, the mathematical representations used, the frequency
of students being allowed to select their own methods for solving the mathematical
tasks and the number of tasks embedded in real-life situations.

In many of the report’s statistics, the Netherlands does not stand out at all. Many
of the Dutch frequencies in the tables and bar graphs are similar to those of the
other countries, in particular to those from Australia, the Czech Republic or Switzer-
land. Just like in other countries, the Dutch teacher sits and stands in front of the
class, discusses homework, presents new content to the whole class, and the students
individually do exercises to practise the mathematics taught.

However, there is one result in which the Netherlands distinguishes itself from the
other six countries in the study, see Fig. 3.1. This involves how tasks are presented to
the students. In the study, a distinction is made in two categories. The first category
contains tasks which are presented by using mathematical language only, such as
“Graph the equation: y= 3x + 7” or “Find the volume of a cube whose side measures
3.5 cm.” The tasks in this category are given in numbers, mathematical operations
and symbols, and the verbal expressions relate to mathematical objects only. The
second category contains tasks which are presented to students within a real-life
context, such as “Estimate the surface area of the frame in the picture below” or
“Samantha is collecting data on the time it takes her to walk to school. A table shows
her travel times over a two-week period; find the mean.” Whether teachers brought
in real-life connections at a later stage of the lesson was not included in the statistics.
The categorisation only deals with the set-up of the tasks.

In Fig. 3.1, we see that in the 84 randomly selected mathematics lessons in Grade
8 in the Netherlands, there is a relatively smaller percentage of tasks which was
set up using mathematical language or symbols only, on average 40% of the tasks
per lesson. In the other countries, approximately 70–90% of the tasks was set up
only with numbers and symbols. The frequencies for the second category show a
reverse picture. In the Netherlands, the percentage of tasks per lesson that started
from real-life connections is 42%, while in the other six countries this percentage



3 Task Contexts in Dutch Mathematics Education 33

Fig. 3.1 Percentage of problems permathematics lesson inGrade 8 that was set upwith andwithout
the use of a real-life connection (from Hiebert et al., 2003, p. 85); AU = Australia CZ = Czech
Republic, HK = Hong Kong, JP = Japan, NL = the Netherlands, SW = Switzerland, US = United
States

ranged from 9 to 22%. Another thing that Fig. 3.1 shows is that the percentages for
the Netherlands do not add up to 100. The report does not give much explanation
for this. There is only a footnote, saying that the researchers were not able to code
all tasks. It means that apparently 18% of the tasks in the Dutch classrooms could
not be coded as either having mathematical language and symbols only, or having a
real-life connection. I will later come back to this issue.

In Fig. 3.1 the Netherlands was compared to only six other countries. When com-
paring to a larger number of countries we do see a similar phenomenon. The TIMSS
2003Mathematics report (Mullis, Martin, Gonzalez, & Chrostowski, 2004) contains
the results of an analysis of where the emphasis is placed in the intended mathe-
matics curriculum in Grade 8. Educational authorities in all participating countries
were asked, for example, whether the focus of mathematics education is on master-
ing basis skills, on understanding mathematical concepts and principles, on applying
mathematics in real-life contexts, on communicating mathematically, on reasoning
mathematically, on integrating mathematics with other subjects or on incorporating
experiences of ethnic/cultural groups. Again, the Netherlands stands out.

Applyingmathematics in real-life contextswas given a lot of emphasis in the intended eighth-
grade curriculum of 17 participants. Botswana, the Netherlands and South Africa reported
placing more emphasis on this approach than on mastering basic skills or understanding
mathematics concepts. (Mullis et al., 2004, p. 177)
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In most countries, there was more emphasis on mastering basic skills or
understanding mathematics concepts, but this was not found for the Netherlands.

The results from the TIMSS Video Study and from TIMSS 2003 do not reflect
a new phenomenon. Dutch mathematics education has had an emphasis on the use-
fulness of mathematics for centuries already. This emphasis distinguished Dutch
mathematics education from that of many other nations, where the classical Greek
mathematics dominated the curriculum, with topics such as two-dimensional geom-
etry, arithmetic, harmonics (the study of structures in music) and astronomy. Greek
philosophers such as Plato considered every kind of skill connected with daily needs
as ignoble and vulgar, and they praised mathematics for its purity. The justifica-
tion for teaching esoteric mathematics was aesthetical: it would raise the learners’
spirits (Kline, 1953). In the past two thousand years in Europe, this Greek empha-
sis was upheld in mainstream mathematics education. The higher classes (nobility
and clergy) in the aristocratic European societies had an esoteric activity in study-
ing mathematical deductive reasoning through Euclid’s Elements (Dunham, 1990).
It established mathematics as a deductive science, in which axioms and definitions
lead to a hierarchy of theorems, and the truth of theorems was established through
proofs.

In the 16th century Netherlands, citizens started a revolt against the Habsburg
Monarchy, which led to the proclamation of an independent republic, the Republic of
theSevenUnitedNetherlands.TheDutch elite consisted of rich,Calvinistic patricians
with a pragmatic mind and an aversion to vanity (Schama, 1991). These powerful,
urban merchants needed worldly mathematical applications to organise their society,
their businesses and their lives. They needed practical mathematics, which did not
come from Greece and which was not written in Latin. Already in the late Middle
Ages, many Dutch artisans and merchants, including women, gained mathematical
competencies. In an early manuscript in the Dutch language, dating back to 1445 and
in which calculations with the Hindu-Arabic numerals were taught, mathematics was
presented and practised through tasks with commercial contexts, such as converting
measures (weights, lengths) and money (pounds, shillings, pennies) (Kool, 1999).
Also, the mathematics taught at the citizen’s universities was fairly practical, linking
to the training of future civil engineers. The mathematics at 17th century universities
contained many applications from navigation and the architecture of fortifications
(Van Maanen, 1987).

The Dutch curricular emphasis in which mathematics teaching and learning is
connected to real-life contexts can be traced back to a mix of Calvinism (abstain-
ing from esoterica), medieval democracy (accessibility of mathematics education to
many), and civil societal needs (engineering, commerce). This utilitarian emphasis
was already present centuries before the domain-specific instruction theory of Real-
istic Mathematics Education (RME) (Van den Heuvel-Panhuizen & Drijvers, 2014)
was developed by Hans Freudenthal and his colleagues in the 1970s. In fact, the
culture of usefulness of mathematics as a curricular emphasis which already existed
for 500 years may have created a fertile ground for RME.
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Tasks in mathematics education generally consist of a text (whether with mathe-
matical language or not) and a question, or a sequence of questions. The questions
within tasks are meant to make student carry out mathematical activities. As the
TIMSS Video Study (Hiebert et al., 2003) and the TIMSS 2003 study (Mullis et al.,
2004) demonstrated, many tasks in Dutch mathematics education are presented to
students within a real-life context. In this chapter I will describe context tasks in
Dutch mathematics education as found in textbooks and examinations, and I will
focus on the contexts, the questions, and their relationship to reality. However, in this
chapter I will not:

– Discuss students’ and teachers’ perceptions, appreciation or dissatisfaction of
contexts in Dutch tasks

– Analyse instructional settings for context tasks (e.g., whether, how and why used
for group work, homework, tests, etc.)

– Describe curricular goals of using contexts within tasks, namely to introduce stu-
dents to a mathematical concept, allowing them to use out-of-school knowledge
and informal procedures, from which they can develop more abstract knowledge
and more formal procedures.

In Sects. 3.3 and 3.4, I will qualitatively and quantitatively analyse context tasks
in a sample chapter of a textbook and in a sample of national examination tasks.
To describe distinguishing features of contexts, I will first explain a framework for
categorising task contexts.

3.2 Categories for Mathematical Tasks and Their Relation
to Reality

Tasks in mathematics classes may or may not have a link to real-life. The TIMSS
Video Study (Hiebert et al., 2003) distinguished two categories: (1) tasks, which are
presented by using mathematical language only, and (2) tasks which are presented to
students within a real-life context. To describe contexts in Dutch mathematics tasks,
I will make a more fine-grained categorisation.

When tasks are presented by using mathematical language only, some researchers
speak of abstract tasks. I will call them ‘bare tasks’, following Van den Heuvel-
Panhuizen (2005). For example, the exercise

3
1

2
÷ 1

4

is a bare task; the numbers have no other meaning than being numbers. In many
textbooks throughout the world, one may see rows of such tasks. The repetitive
nature of such tasks is intended to train students to memorise and practice the rule
for the division of a mixed number by a simple fraction: dividing by a fraction
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means to multiply by its inverse. Rows of such bare tasks are part of mechanistic
drill-and-practice.

Drill-and-practicemay be useful for instilling automated competencies. However,
in this chapter I will use the term ‘useful’ in the way Freudenthal (1968) meant in his
seminal article “Why to Teach Mathematics So As to Be Useful”, where usefulness
of mathematics means that an individual student manages to flexibly and practically
apply themathematics learned in a rich variety of new situations.Wigfield and Eccles
(2000) explained usefulness as a motivator, when students expect and value learned
content as something that will help them do things better outside of class. Most
students are aware that drill-and-practice tasks are useful to pass tests (and that the
skills may be forgotten thereafter). Therefore, Williams (2012) specified usefulness
as: (1) having ‘exchange’ value (relating to the possibility that a mark can be used to
enter a next level of learning) and (2) having ‘use’ value (relating to the competence
and understanding required to use and apply mathematics in future practices, as
professional or as citizen). Bare tasks clearly have ‘exchange’ value, but their ‘use’
value is not easily perceived by students. In this chapter, I will refer to ‘use value’
when speaking of ‘usefulness’.

When tasks for students in mathematics classes are presented within a real-life
context, there are many words to describe such tasks: word problems, story prob-
lems, context(ual) problems, real-world problems, work-related problems, situated
problems, and so forth. In this section I will use the terms ‘tasks’1 and ‘contexts’.
The term context refers to a situation or event in the task, which often is from real-
life or from imaginary situations (e.g., fairy tales). Essentially such contexts look
quite unmathematical. Contexts in tasks are also referred to as ‘figurative contexts’
or ‘problem situations’. Below I will discuss sub-categories of context tasks.

Task designers (textbook authors, teachers) can opt to adapt the above division
3½ ÷ ¼ = … into the following task:

“How many quarters of an hour go into three and a half hours?”

In this reformulation, the fraction exercise is givenmeaning,with all numbers becom-
ing time chunks and the dimension unit is an hour. This is a contextualisation of the
original bare task. A contextualised task has little mathematical language and few
symbols. Onemay observe that the task is connected to an unspecified time situation,
as it is not clarified what the quarters of an hour and the three and a half hours are
part of, nor is any reason given why the question should be answered.

The bare division exercise 3½÷ ¼ = …could also have been contextualised into
another unspecified context, for example into a pizza situation:

“How many quarters of a pizza go into three and a half pizzas?”

Again, this context is unspecified, as it is not clarified what the quarter pizzas are
needed for and where the three and a half pizzas come from. Furthermore, the bare
division exercise could also have been contextualised into money units:

1In this chapter, the term ‘problem’ is used for non-routine, problem-solving tasks. Therefore, terms
such as ‘practice problems’ and (standard) ‘word problems’ are avoided.
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“How many quarters of a dollar go into three and a half dollars?”

Again, this is an unspecified context, as it is not clarified what the quarter coins and
the three and a half dollars are used for. Moreover, one may notice that the exercise
cannot be contextualised well in money units for some countries; for example, the
Euro has no quarter coins.

With the above contextualisations, the bare division of fractions acquires a certain
meaning, because the numbers become concrete. Amongst others, Clausen-May and
Vappula (2005) and Palm (2002) have convincingly demonstrated that such contex-
tualisations change the cognitive demand of bare tasks, for a variety of reasons. First,
the adapted task requires students to read words instead of symbols. Second, many
students are discouraged by symbolical tasks and more motivated for contextualised
tasks. Also, most students are able to mobilise knowledge acquired outside school
and use it for solving the task. For example, they may use the idea that a quarter
of an hour equals 15 min, and then use the fact that four times 15 min make an
hour. Or, in the pizza situation, they may use the idea that four quarter pizzas make
one pizza; or, in the dollar coins situation they may use the idea that four quarter
dollars make one dollar. In this way, the divisor is no longer a simple fraction, and
the fraction task loses one of the fractions. Thus, contextualisation may increase the
task’s accessibility and support students’ understanding that a division by ¼ can be
translated into a multiplication by 4. Such contextualisations could be used in the
introduction to a teaching sequence to assist students in understanding mathematical
rules for fraction operations, allowing them to use their out-of-school knowledge to
first develop informal procedures, from which they can later develop more formal
procedures.

By contextualising a task, the numbers get a meaning (in units and dimensions).
However, this does not mean that the exercise becomes useful (meaningful or inter-
esting) to all students. Why should anyone calculate the number of quarters of an
hour that go into three and a half hours? Why should anyone calculate the number of
quarter dollars that go into three and a half dollars?Why should anyone calculate the
number of quarter pizzas that go into three and a half pizza? What is the justification
for the calculation? In particular, if there are no credible actors described within the
context: people or institutions with a problem that needs to be solved. Thus, a context
does not imply that the question posed to the students has justification. Therefore,
it is important to consider whether the posed question would be asked within the
context. If there is no clear need to perform the mathematical activities, other than a
didactical need to get a correct answer within the discourse of mathematics learning,
the contextualised task is as a ‘dressed-up’ task, hiding a mathematical task (Blum
& Niss, 1991). Many so-called ‘word problems’ are dressed-up tasks with pointless
questions. The task in which is asked “How many quarters of an hour go into three
and a half hours?” is a dressed-up mathematical task.

To improve dressed-up tasks, a task designer can make the context more realis-
tic. I use the term ‘realistic’ here as being related to real. The relationship between
real and realistic is considered parallel to the relationships absolute-absolutistic,
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central-centralistic, dual-dualistic, ideal-idealistic, material-materialistic, natural-
naturalistic, and so forth. Realistic means: as if from real-life, close to reality, or
could be imagined as real. The term ‘realistic’ is used in this chapter for contexts in
tasks only, and it needs to be distinguished from the meaning of ‘realistic’ in RME,
which refers to the use of a certain sequence of activities, starting from more con-
crete tasks, for which students use common knowledge and after a carefully designed
sequence of activities, the students are guided towards more formal mathematical
thinking. Thus, in RME the curriculummay contain tasks with realistic contexts, but
there may also be bare tasks. The adjective ‘realistic’ in RME is not the adjective
for all tasks within that approach. Moreover, I would like to emphasise that in this
chapter I only describe contexts for tasks in Dutch mathematics education, and not
the philosophy for including or sequencing different sorts of tasks.

The dressed-up task “How many quarters of an hour go into three and a half
hours?” can be contextualised with a realistic context. A first example is:

A doctor in a health centre has consultations in the morning from 8.30 to 12.00 h. The
patients have consultation visits of a quarter of an hour. How many patients can the doctor
see?

In this task, again the students have to calculate howmany quarters of an hour go into
three-and-a-half hours. However, in this doctor context the justification for the calcu-
lation is to know the maximum number of patients, excluding the options for coffee
breaks or speedy five-minute consultations. The question in the task is a question
that may be asked of a medical doctor in a real situation. An answer to the question
is useful for planning purposes within a professional practice. Additionally, assum-
ing that most students know the system of medical consultations by appointment,
the division exercise becomes experientially real (Gravemeijer, Cobb, Bowers, &
Whitenack, 2000). A second example of a realistic context for this task is:

A team of whale watchers (biologists) has a boat in a coastal area of a deep ocean. One day
they pursue one animal for observations. Their boat has fuel that will last for a trip of three
and a half hours. In between breathing the animal plunges into the deep water and then it
cannot be observed. The animal plunges for a quarter of an hour before it needs to breathe
air again. How many times can the whale watchers see the mammal?

The question in the task is a question that might be asked in a real whale watching
situation, and the answer to the division gives an estimate for the maximum number
of sightings. Thus, in this context such questions are asked, or in other words, the
context of whale watching justifies the division calculation making the mathematical
calculation useful. The whale watching context is an example of a context that the
students may never have experienced in their lives, unlike the context of the medical
doctor and his consultation slots. However, many students may have heard of the
experience of whale watching, or may have seen it on television. This makes the task
imaginable for students, without being experientially real. With this whale watching
context, one may also observe, that adding realism implies adding complexity. It is a
realistic context, and not a real, authentic context. In a truly authentic situation, the
whale watchers need extra fuel for returning home, for possible bad weather, and
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whales do not surface exactly at the beginning of a trip. In real life, the question may
require a more complex calculation than a mere fraction division.

In the above text, I have described a designer’s hypothetical road, thereby dis-
tinguishing between possible contexts for one and the same bare task. This creates
a more fine-grained categorisation of the category of tasks which are presented to
students within a real-life context that has been distinguished in the TIMSS Video
study (Hiebert et al., 2003). I now have the following sub-categories formathematical
tasks and their relation to reality:

– ‘Bare tasks’, which are presented in mathematical language and symbols
– ‘Dressed-up tasks’, which hide a mathematical task; they have a certain context
and a pointless question; this category includes tasks with realistic contexts, in
which the need for answering the question is not justified through the context

– ‘Tasks with a realistic context’ (experientially real or imaginable), in which the
question makes sense within the context, and an answer to this question has use
value within the context.

In addition to these categories, I will introduce two more categories of mathe-
matical tasks. The bare task on the division of a mixed number by a simple fraction
3½÷¼=…can be embedded into a mathematical context, by showing a bar, which
consists of three-and-a-half units (see Fig. 3.2).

Without using (much) mathematical language, a task designer can ask for the
number of small units that would fit into the larger, or can ask howmany of the small
units would make the same area as the larger one. This yields another category:

– ‘Tasks with mathematical contexts’.

Tasks with mathematical contexts do not contain (much) mathematical language, but
they are about mathematical objects and their properties. Such tasks can be found
in geometry and are often visual. They can be, for example, about tiling. Also, tasks
on matchstick patterns or growing patterns of triangular shapes, as used in early
algebra (see, for example, Radford, 2006) have mathematical contexts, which are
not encountered in real-life. The need to answer the question is never justified by the
context, because mathematical contexts do not have actors who need solutions. For
students, it will often be hard to perceive any ‘use value’ to an answer. Tasks with

Fig. 3.2 Bar visualisation
for the fractions 3½ and ¼
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a mathematical context can be distinguished from a bare task through the language
used.Bare tasks containmainlymathematical language and symbols,while taskswith
a mathematical context have more informal language. A task with a mathematical
context contains descriptions that give a certain meaning to mathematical concepts.
In some cases, themathematical context can even be associated to real-life objects. In
the example above, the rectangular bar can be associated to a chocolate bar, without
this explicitly being mentioned in the task.

I will use onemore category to describe the context inmathematical tasks. Among
others, Dierdorp, Bakker, Eijkelhof, and Van Maanen (2011), Palm (2002), Vos
(2011, 2015) and Wijers, Jonker, and Kemme (2004) have used the term ‘authentic-
ity’ when describing a context of a task. This term refers to being a genuine (true,
honest) context, not being a copy or a simulation. Such a context may be related to
practices outside school (e.g., the workplace). Authenticity is a characteristic that
requires clear evidence, for example, through photos (as opposed to drawings), or
when governmental datasets are used in a statistical task. Thus, I add another category
of tasks and their contexts:

– ‘Tasks with authentic contexts’, in which the origin of the context is explained
through convincing resources. In this category, also, the context justifies the
question, and an answer is useful within the described context.

It remains to be noted that not all tasks with an authentic context contain mean-
ingful questions. For example, the context of the ‘Big foot’ task (Blum, 2011), in
which a giant shoe is depicted by a photo, is authentic. The photo is the proof of its
existence in real-life. The question here is to calculate the height of a person who fits
this shoe. This task matches the curricular concept of mathematical similarity and
proportionality, which makes the task relevant to mathematics teachers. However,
depending on one’s background, one may raise other questions. A shoemaker may
ask how much leather is needed for such a giant shoe. A thief may ask how much
the statue weighs. An art student may ask into what artistic tradition the statue fits.
In other words, the task resources may be authentic, but the mathematical question
that is posed in the task is only useful to practise mathematical operations. It is not
a question that would emerge from people working with statues, nor from people
admiring art. Blum’s (2011) classroom experiment also showed that the question did
not make sense to students. They just took the numbers out of the text and performed
erratic operations. Therefore, the task is a dressed-up mathematical task on similar
triangles, only distinguished from an ordinary word problem by the authenticity of
its context, but not of its question. In an interesting alternative to the ‘Big foot’ task,
Biccard andWessels (2011) designed a task to assist the police in relating foot prints
found at crime scenes to the possible size (height and weight) of suspects. In this
way, this task did not merely ask for finding a number, but became realistic (not fully
authentic, but imaginable) and the posed question was a useful component of crime
scene investigation.

In sum, the above categorisation contains five categories: the first is bare tasks
and then I listed four categories for context tasks, including the category of tasks
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with mathematical contexts. This categorisation will assist in describing tasks and
their contexts in Dutch mathematics education.

3.3 Tasks Contexts in a Dutch Secondary Education
Mathematics Textbook

In this section I will provide the results of an analysis of tasks in a mathematics
textbook following the previously outlined categorisation. For this analysis, I used
the textbook seriesGetal & Ruimte (Reichard et al., 2006) which is most widely used
in the Netherlands. The analysis is based on the textbook for students in Grade 10 in
HAVO (general secondary education)2 and within this textbook I chose the chapter
“Working with Formulae”, which I consider as representative for this textbook in
particular, and for textbooks used in mathematics education in the Netherlands in
general. This chapter has four sections, each of which can be covered within approx-
imately two to three hours. The chapter is introduced with a page-wide photograph
of four students doing a physics experiment and a text stating that it takes a number
of measurements to create a formula, which can be used to predict where a moving
object will halt. This introduction (without task) has a realistic context, which is
experientially real, as many students have done experiments in physics classes. It
explains the usefulness of mathematical models for making predictions. The pho-
tograph showing four students doing a speed experiment in a laboratory creates an
aspect of authenticity.

The first section is about creating and working with formulae in two variables. In
all tasks and worked examples3 the variables are x and y. Out of the 18 tasks, there
are 14 bare tasks and 4 context tasks (22%). Out of the six worked examples there is
one worked context task (17%). To give an idea of the contexts, the first context task
is about a school class going on a weekend camping trip and Peter (an unspecified
boy) organises the shopping to the bakery, buying only loaves and buns, each of
which has a unit price. The question is to create a formula for the total costs in two
variables (x for loaves of bread, y for buns). The worked example is about a concert
hall, which has two price levels with tickets being e12 or e15, and the total income
will be 12x + 15y. The created formulae are simplified versions of more complex
price models, which are used for economic decisions. However, the contexts of a
certain Peter buying bread or a certain concert hall selling tickets do not provide
any evidence whatsoever that there is a need for creating such formulae within such
simplified contexts. Also, the formulae in two variables are not used for any further
problem solving related to the context. Thus, the tasks are dressed-up tasks offering
students training to find formulae.

The second section is about using given equations in two variables. It starts with
five bare tasks and a bare worked example on finding intersection points of two

2Grants admission to higher vocational education.
3A worked example is a task with a complete explanation showing how to solve the task.



42 P. Vos

Fig. 3.3 Folding task on the
position of P to make AP
equal to AD

graphs, or on determining the parameters of a parabola y = ax2 + bx + c passing
through three given points. Then, there are five tasks with mathematical contexts.
The first is on paper folding (see Fig. 3.3). The context is a rectangular piece of paper
ABCD of size 20 cm by 30 cm and point D is folded onto side AB. The question is to
find the position of point P on AD, which will make AP equal to AD. The students are
invited to try the folding physically first. Through some scaffolding, the students are
guided to takeAP= x, determine the quadratic equation x2 + x2 = (20 – x)2 and from
there find point P. The mathematical context is described in limited mathematical
language.

The worked example also has a mathematical context and asks: “How can a letter
T be drawn inside a circle with radius 6, with the restriction that the vertical bar
of the T must be equally long to its horizontal bar?” Thus, out of 10 tasks in the
second section, there are five tasks with mathematical contexts (50%). Out of the
two worked examples there is one with a mathematical context (50%). This section
does not have a single realistic context.

The third section contains 12 tasks, all of which are tasks with contexts. A sample
of four tasks is shown in Fig. 3.4, and these tasks illustrate the others in this section.
The tasks have a repetitive format. First a context is described and a formula with
parameters a and b is given, then two data points are given that need to be fitted into
the formula, and from there the parameters can be calculated. All tasks end with the
same small sentence: “Calculate a and b.”

The contexts in these four tasks present problem situations in which phenomena
have to be modelled mathematically: the growth of bacteria, the density of traffic
related to the tariffs of toll roads, the productivity of timber production depending
on the growth time of trees before chopping them, and the effectiveness of TV-
commercials. The other tasks in the section additionally have contexts of balls in
sports, packaging of tin cans and wooden boxes, and farmers enclosing paddocks.
The contexts are realistic and imaginable, assuming that most Grade 10 students have
little personal experience with these areas, but a certain notion that such areas could
exist. The mathematical models of the problem situations resonate with the text on
laboratory research at the beginning of the chapter, in which it was explained that
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Fig. 3.4 Tasks from the chapter “Working with Formulae” in the textbook series Getal & Ruimte,
Wiskunde HAVO B, Part 2 (Reichard et al., 2006, p. 22) (translated from Dutch by the author)

mathematical models are used for making predictions. However, the usefulness of
calculating a and b is nowhere explained.

The textbook authors have kept the contexts vague. There is no evidence of an
authentic resource of the contexts. They describe the contexts in impersonal terms
by using the pronoun ‘one’, like in ‘one can assume’ or ‘one uses a model’ or by
referring to unspecified consultancy companies and marketing agencies. In the other
tasks a photo was added (the packaging task shows a tin can) and people’s names
were invented (the farmer who encloses a paddock is a certain farmer Wunderink
and the tennis player is a certain Richard) to improve the realism. Also, it is highly
unlikely that the mathematical formulae are authentic. Instead they are quadratic or
cubic polynomials to fit the cognitive level ofGrade 10. If the formulae had originated
from real research, this could have been mentioned.

In the above analysed section of the chapter, students encounter twelve different
real-world situations, in which mathematical formula are used to model phenomena.
However, these contexts are not to be considered for answering the posed question to
calculate the parameters. What students need to do is lift the formula from the text,
identify the two variables and, in the text, find the two appropriate data points that
should be inserted into the formula. This results in two equations with two unknowns,
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which can be solved for a and b respectively. The answers that the studentwill give are
either correct or incorrect, and these answers have nothing to do with the contexts. In
not one task, the created formula is put to use and givenmeaning within the described
context. These tasks can also be termed as ‘reproductivemathematising’ (Vos, 2013).
They are dressed-up tasks for solving two variables from two equations. In fact, the
sequence of twelve tasks in this section is a dressed-up drill-and-practise activity.

The fourth section of this textbook chapter contains ten tasks and two worked
examples, all of which are contextualised. The contexts are on the trajectory of a
football, a physics experiment with a cart moving over a rough surface, water run-
ning out of a bath tub, a biologist counting crane-flies, labour productivity, and a
meteorologist measuring weather temperatures. In these tasks, a context is described
realistically (imaginable and not authentically), a formula is given with two param-
eters, and two data points are offered so students can determine the parameters a
and b (just like in Fig. 3.4). The difference with the previous section is that there are
additional questions to put the formulae to use to make predictions or to find maxi-
mal values. In all tasks, the questions are useful to imaginable actors in the context.
Therefore, I evaluate these tasks as having realistic contexts, and the questions make
sense within the context.

Summing up, in this average Dutch mathematics textbook chapter there were
50 tasks, out of which 19 (38%) were bare tasks posed in mathematical language
only, 5 (10%) had mathematical contexts, and a little more than half of the tasks were
related to real-life. Of these tasks 16 (32%) were dressed-up tasks and there were 10
(20%) tasks with realistic contexts and questions that made sense within the context.
There were no authentic contexts. As a whole, this textbook chapter confirms the
high level of contextualised activities in Dutch mathematics classrooms.

The analysis of this exemplary chapter may also offer a possible explanation for
the tasks that the TIMSS Video Study (Hiebert et al., 2003) could not code, which
means that according to this study 18% of the tasks in the Dutch classrooms had
neither mathematical symbols only nor a real-life connection. It is possible that such
tasks had informal language only for describing a mathematical context. As we have
seen, such tasks can be found to a small extent in Dutch mathematics education
(10% of the tasks in the analysed textbook chapter). Therefore, the TIMSS Video
Study found tasks in the Netherlands that did not match either of the categories of
(1) having mathematical symbols only, or (2) having a real-life connection.

Another observation that has to be made is that judging tasks individually within a
chapter has its limitations. The tasks in the third section, which all asked: “Calculate
a and b” were judged as dressed-up, because the answers for the parameters a and
b were not useful at the very moment of doing the tasks. However, this judgement
should be nuanced when the chapter is observed as a whole. The chapter starts
with an explanation that gives a connecting thread until the end of the chapter.
The introduction to the chapter highlights the importance of mathematical models
for making predictions, and in the final section this is practised through scaffolded
tasks, in which formulae are created to make predictions. Thus, the practise-and drill
questions “Calculate a and b” become useful as an intermediate step for follow-up
activities. So, what in the short term may look as dressed-up may be a stepping stone
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towards a realistic task where the context justifies the question, and where an answer
is useful within the described context.

3.4 Contexts in Dutch Secondary Education National
Mathematics Examinations

In this section I discuss the results from analysing a sample ofmathematics tasks from
the Dutch national examinations at the end of secondary education. The Netherlands
has a system of exit examinations, which implies that all students who want to
enter tertiary education (higher vocational education or university) have to pass one
of the national examinations. Since teachers at secondary schools have to prepare
students for these examinations, the national examinations have quite an impact on
mathematics classroom practice, including the role of contexts in mathematics tasks.
The purpose of my analysis of the examination tasks was: (1) to verify earlier claims
on the high frequency of mathematics tasks with a real-life connection in Dutch
education, and (2) to characterise the tasks.

For this analysis, I selected the examinations from2010 for all available secondary
school levels: pre-vocational (VMBO, examination at the end of Grade 10), general
(HAVO, examination at the end of Grade 11), and pre-university (VWO, examina-
tion at the end of Grade 12). Each of these secondary school levels (pre-vocational,
general and pre-university) has several examinations, depending on the track that
students follow. At the pre-vocational level, there are three different examinations
(for the tracks KB, BB, and GLTL), which differ mainly on cognitive demand (KB
for the lowest achievers, and GLTL for the highest achievers in pre-vocational edu-
cation). At general and pre-university level, there are two different examinations,
for Mathematics A and for Mathematics B. The subject of Mathematics A is meant
for students who are more interested in the social and economic sciences, while
Mathematics B is for students interested in natural sciences and technology. In the
analysis, I did not include the experimental computer-based examinations and the
re-examinations, because the characterisation of contexts in these was not expected
to differ from the regular examinations.

Each analysed examination paper is 11–13 pages long and contains much text,
in which contexts are described, often accompanied by illustrations, diagrams or
photographs. Students’ reading time for these examinations must be considerable.
All questions are grouped under a theme, which is indicated by a clear title. For
example, the following titles are used:

– At pre-vocational level (VMBOGLTL 2010) there are 25 tasks grouped under the
following headers: ‘Pita bread’, ‘Quetelet index’, ‘From Betancuria to Antigua’,
‘Magnetic’, ‘Façade flag’, ‘Thunder and lightning’

– At general level (HAVOMathematics A 2010) there are 23 tasks grouped under the
following headers: ‘A game of tennis’, ‘China’s defence budget’, ‘Gas transport’,
‘Bullet proof vests’, ‘Fuel consumption by airplanes’
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– At pre-university level (VWO Mathematics B 2010) there are 18 tasks grouped
under the following headers: ‘Equal surfaces’, ‘Trivet’, ‘Rectangles touching a
circle’, ‘Condensators’, ‘A rectangle in pieces’, ‘Logarithm and 4th power’, ‘A
geo triangle’.

The titles indicate a wide variety of areas where mathematics can be used. Under
each title a context is described, which serves as a context for several questions. In
this way, each question does not have its own context, which reduces the reading
time. Questions belonging to a title are independent of one another, that is, if students
cannot answer one question, they can still complete ensuing questions that have the
same context.

For example, the examination at the pre-vocational level includes questions
grouped under the title ‘Pita bread’. The context is an event in the city of Eind-
hoven on 24 December 2004 where a huge pita bread was baked. The questions are
about the diameter and the area of the baking tray, the required amount of flour,
and the number of normal-size sandwiches that could be cut from it. The context is
clearly authentic, as testified by a given date and an existing Dutch city (allowing
for verification of the event), and the questions make sense within the context. The
task shows clearly howmathematics can be useful outside school within recreational
domains.

In this examination at the pre-vocational level, I also found a number of questions
grouped under the title ‘Façade flags’, which contains the illustrations shown in
Fig. 3.5. The text explains that there are three possible models. The students are
asked to make a drawing in which Model 1 is mirrored, to calculate the lengths of
sides c (in Model 1) and d (in Model 2), and to calculate the area of Model 3. As

Fig. 3.5 Illustrations that go with the ‘Façade flags’ task (VMBO GLTL Examination, 2010)
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there is no clear reason given why the drawing and calculations are needed, I coded
the questions as ‘dressed-up’.

The examination for Mathematics A at the general level (HAVO) starts with two
groups of questions clustered by authentic contexts. The context of the first group
is a tennis match between Roger Federer and Fernando Gonzalez at the Australian
Open Championships of 2007. The statistics of the match are given (points played,
points won on first service, points on second service, and so on) and the questions
are about the probabilities of winning points, which are meaningful for sports fans
(and betting companies). The context of the second group of questions is China’s
defence budget according to the Pentagon and according to the Chinese government
information. The questions are about trends in the data, which are meaningful for
critical observers of political information.

The third group of questions is clustered under a context of a company that trans-
ports gas, which is a context related to the fact that the Netherlands has a natural gas
reserve and exports gas. The text explains that in the Netherlands there is a network
of gas pipes bringing gas to families and businesses for heating and cooking. If it is
very cold, then customers will need more gas and the maximum capacity of the net-
work is reached. A certain unidentified company for gas transport uses the formula
P = 5.5 + 18−T

30 · 94.5, where P is the percentage of the capacity used, and T is
the temperature. First, the students are asked about the properties of the formula (the
range for T ). Then some data are given on the occurrence of temperatures below −
12 °C over the past 100 years, and the students are asked for a probability that such
low temperatures occur on a day within a three-month winter season. Finally, the
students are told that the above stated formula can be re-written in the shape P = aT
+ b and do they have to calculate a and b.

The above questions are all set within an industrial context, implying that compa-
nies use mathematical formulae for their planning. However, the context is artificial,
the given formula lacks credibility for real-life use, the probability question is not
used within the context, and the final question to calculate parameters is pointless.
All questions were therefore coded as dressed-up tasks.

In theMathematics B examination at pre-university level I found a number of bare
mathematics tasks, mainly on calculus. There is a task in which a trivet is shown (see
Fig. 3.6), which consists of bars that can hinge. The text explains that this trivet has
19 equal rhombuses, and that the thickness of the bars will be ignored for creating
a mathematical model for this trivet. The leftmost hinging point is indicated with P,
the midpoint of the middle rhombus with O. The inner angle at P is α (in radians),
and for the side of a rhombus length 1 is taken. Length l and width w of the model
are functions of α, whereby 0 ≤ α ≤ π, and it is given that l = 10cos(½α) and w
= 6sin(½α). The question then is: “Show that the formula for l and w are correct.”
In the following questions these formulae have to be used for calculating angle α,
at which w increases with the same rate as l decreases, for reconstructing a given
formula for distance OQ, and for calculating angle α at which the trivet fits within a
circle. I coded the task as a task with a mathematical context.
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Fig. 3.6 Illustrations that go with the ‘Trivet’ task (Pre-university secondary education, Mathe-
matics B Examination, 2010)

To give an overview of the context characteristics of the tasks in the Dutch math-
ematics examinations, Table 3.1 displays the types of tasks involved at each school
level and the proportion of points that can be earned for each type of task.

From Table 3.1, we see that many of the tasks in the examinations at the voca-
tional level and for Mathematics A at the general secondary education level, were
set in contexts, in particular in realistic contexts. There were quite some dressed-up
tasks (realistic descriptions, but questions that were not justified through the con-
text), such as the ‘Façade flags’ task or the ‘Gas company’ task. All tasks contained
some authentic contexts and questions that were relevant in such contexts, such as
the ‘Pita bread’, the ‘Game of tennis’ and the ‘China’s defence budget’ tasks. The
authentic contexts were mostly used in Mathematics A in general and pre-university
secondary education and not that much in vocational education, meant for students
who generally have a lower level of learning. Obviously, authentic contexts are more
complex and require mathematics with higher demands. The examination papers for

Table 3.1 Context characteristics of the tasks in the Dutch secondary education mathematics
examinations in 2010

Secondary school
type (total
amount of points)

Proportion of points that can be earned in

Bare
tasks
(%)

Mathematical
context tasks
(%)

Dressed-up
tasks (%)

Realistic
context
tasks (%)

Authentic
context tasks
(%)

Vocational 0 14 16 57 13

Mathematics A

General 0 0 18 37 45

Pre-university 0 9 38 0 52

Mathematics B

General 29 5 56 0 10

Pre-university 25 57 18 0 0
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Mathematics B (for students aspiring natural sciences and technology) contain more
bare tasks than any other examination paper. This can be explained, because Math-
ematics A is a subject that aims more at modelling competencies and the practical
use of mathematics, while Mathematics B aims more at conceptual understanding of
mathematical concepts, such as the derivative or trigonometric functions. When we
take the Mathematics A and B examinations together and compare the examinations
at the general secondary education level with those at the pre-university secondary
education level we see that the former has more dressed-up tasks, while the latter
has more mathematical contexts (such as the ‘Trivet ask’).

Overall, theDutchmathematics examinations of 2010 containmany context tasks,
whether dressed-up, realistic or authentic, confirming the Dutch emphasis on con-
necting mathematics to real-life contexts. The contexts in the examinations were
primarily from recreational practices (sports and leisure) or professional practices
(commerce, research). As a driving force in classroom practice, the examinations
clearly set out that mathematics is useful in many real-life situations, and that stu-
dents can expect to encounter unexpected areas of mathematics application in the
examinations.

3.5 Conclusion on Contexts in Dutch Mathematics
Education

In this chapter I have described characteristics of contexts in mathematics tasks in
the Netherlands. The underlying frame was the notion of usefulness as a subjective
perception by students on future practices outside school. In analysing the tasks used
in Dutch mathematics education, I made a distinction between bare tasks (without
contexts), tasks with mathematical contexts (e.g., matchstick pattern tasks), dressed-
up tasks (a contextwith a pointless question that hides amathematical question), tasks
with realistic or authentic contexts with questions that are useful within the context.
I analysed a chapter of a mathematics textbook and a sample of examination tasks,
confirming that, indeed, Dutch mathematics education contains many links to real-
life, which are not just presented verbally, but also visually with drawings, photos,
diagrams and other visualisations. The contexts are drawn from a wide spectrum of
areas in real-life, reflecting that mathematics can be found anywhere in society. Most
task contexts come from recreational or professional practices (economy, research),
demonstrating to students the usefulness of mathematics in their future lives beyond
school.

Many contexts can be said to be realistic (imaginable or experientially real),
without being authentic. It was observed that the analysed examinations contained
more authentic aspects than the textbook chapter, and the higher-level examinations
have more authentic aspects than the lower level examinations. Nevertheless, there
were also many artificial contexts in which the posed questions would not be asked
by possible actors in these contexts.
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Finally, a consequence of the typical Dutch feature of offering mathematics tasks
with a relation to real-life is that the attribution of tasks to subjects is not always
clear. This means that a task which in other countries is considered a task belonging
to science education, can in the Netherlands be considered a mathematics task. This
is what I experienced when I offered one of the physics tasks of TIMSS 1999 (see
Fig. 3.7) to a number of mathematics teachers, and all of them said that they con-

Fig. 3.7 ‘Fuel consumption of pumping machines’ task from TIMSS 1999 (Martin et al., 2000,
p. 65; copyright 2000 by International Association for the Evaluation of Educational Achievement
(IEA), reprinted with permission)
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sidered it a normal mathematics task. The task was about two machines, which have
a different fuel consumption and a different pumping capacity. The question was:
“Which one is more efficient?” Such a question within the context of pumping water
makes particular sense in a low-lying country which needs to stay dry, and which
has a commercial culture in which effectivity and productivity are frequently used
concepts. No wonder that on this task the Dutch students had the highest average
score.

References

Biccard, P., &Wessels, D.C.J. (2011). Documenting the development of modelling competencies of
grade 7 mathematics students. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.),
Trends in teaching and learning of mathematical modelling (pp. 375 − 384). New York, NY:
Springer.

Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In
G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning
of mathematical modelling (pp. 15 − 30). New York, NY: Springer.

Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and
links to other subjects—State, trends and issues in mathematics instruction. Educational Studies
in Mathematics, 22(1), 37–68.

Clausen-May, T., & Vappula, H. (2005). Context in maths test questions—Does it make a differ-
ence? In D. Hewitt & A. Noyes (Eds.), Proceedings of the 6th British Congress of Mathematics
Education (pp. 41 − 48), Warwick, UK: BCME.

Dierdorp, A., Bakker, A., Eijkelhof, H., & Van Maanen, J. (2011). Authentic practices as contexts
for learning to draw inferences beyond correlated data. Mathematical Thinking and Learning,
13(1–2), 132–151.

Dunham, J. (1990). Journey through genius—The great theorems of mathematics. New York, NY:
Wiley.

Freudenthal, H. (1968). Why to teach mathematics so as to be useful. Educational Studies in
Mathematics, 1, 3–8.

Gravemeijer, K., Cobb, P., Bowers, J., & Whitenack, J. (2000). Symbolizing, modeling, and
instructional design. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing and communi-
cating in mathematics classrooms: Perspectives on discourse, tools, and instructional design
(pp. 225–274). Mahwah, NJ: Lawrence Erlbaum Associates.

Hiebert, J., Gallimore, R., Garnier, H., Givvin, K., Hollingsworth, H., Jacobs, J., et al. (2003).
Teaching mathematics in seven countries: Results from the TIMSS 1999 video study. Washington,
DC: National Center for Educational Statistics.

Kline, M. (1953). Mathematics in western culture. Oxford, UK: University Press.
Kool, M. (1999). Die conste vanden getale. Een studie over Nederlandstalige rekenboeken uit de
vijftiende en zestiende eeuw, met een glossarium van rekenkundige termen [The art of numbers.
A study on Dutch mathematics textbooks from the 15th and 16th century]. Doctoral dissertation.
Hilversum, The Netherlands: Uitgeverij Verloren.

Martin,M. O.,Mullis, I. V., Gonzalez, E. J., Gregory, K. D., Smith, T.A., Chrostowski, S. J., Garden,
R. A., & O’Connor, K. M. (2000). TIMSS 1999 international science report. Findings from IEA’s
Repeat of the Third International Mathematics and Science Study at the eighth grade. Chestnut
Hill, MA: Boston College.

Mullis, I. V. A., Martin, M. O., Gonzalez, E. J., & Chrostowski, S. J. (2004). TIMSS 2003 interna-
tional mathematics report. Findings from IEA’s Trends in International Mathematics and Science
Study at the fourth and eighth grades. Chestnut Hill, MA: Boston College.



52 P. Vos

Palm, T. (2002). The realism of mathematical school tasks: Features and consequences. Doctoral
dissertation. Umeå, Sweden: Umeå University.

Radford, L. (2006). Algebraic thinking and the generalization of patterns: A semiotic perspective.
In S. Alatorre, et al. (Eds.), Proceedings of the 28th Conference of the International Group for
the Psychology of Mathematics Education, North American Chapter (Vol. 1, pp. 2–21). Mérida,
Mexico: Universidad Pedagógica Nacional.

Reichard, L., Rozemond, S., Dijkhuis, J. H., Admiraal, C. J., Te Vaarwerk, G. J., Verbeek, J. A.,
et al. (2006). Getal & ruimte, wiskunde HAVO B, deel 2 [Number & space, mathematics HAVO
B, part 2]. Houten, The Netherlands: EPN.

Schama, S. (1991). The embarrassment of riches: An interpretation of Dutch culture in the Golden
Age. London, UK: Fontana Press.

Van denHeuvel-Panhuizen,M. (2005). The role of contexts in assessment problems inmathematics.
For the Learning of Mathematics, 25(2), 2–23.

Van den Heuvel-Panhuizen, M., & Drijvers, P. (2014). Realistic Mathematics Education. In S.
Lerman (Ed.), Encyclopedia of mathematics education (pp. 521–525). Dordrecht, Heidelberg,
New York, London: Springer.

Van Maanen, J. A. (1987). Facets of seventeenth century mathematics in the Netherlands. Doctoral
dissertation. Zwolle, the Netherlands: De Boer.

Vos, P. (2011). What is ‘authentic’ in the teaching and learning of mathematical modelling? In G.
Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of
mathematical modelling (pp. 713 − 722). New York, NY: Springer.

Vos, P. (2013). Assessment of modelling in mathematics examination papers: Ready-made models
and reproductive mathematising. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.),
Teaching mathematical modelling: Connecting to research and practice (pp. 479–488). New
York, NY: Springer.

Vos, P. (2015). Authenticity in extra-curricular mathematics activities; researching authenticity as a
social construct. In G. Stillman, W. Blum, & M. S. Biembengut (Eds.),Mathematical modelling
in education research and practice: Cultural, social and cognitive influences (pp. 105–114). New
York, NY: Springer.

Wigfield, A., & Eccles, J. S. (2000). Expectancy–value theory of achievement motivation.
Contemporary Educational Psychology, 25(1), 68–81.

Wijers, M., Jonker, V., & Kemme, S. (2004). Authentieke contexten in wiskundemethoden
in het vmbo [Authentic contexts in mathematics textbooks]. Tijdschrift voor Didactiek der
Bètawetenschappen, 22(1), 1–19.

Williams, J. (2012). Use and exchange value inmathematics education: Contemporary CHATmeets
Bourdieu’s sociology. Educational Studies in Mathematics, 80(1–2), 57–72.



3 Task Contexts in Dutch Mathematics Education 53

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.



Chapter 4
Mathematics and Common Sense—The
Dutch School

Rijkje Dekker

Abstract Theold illusion inDutchmathematics educationwas that the teacher could
lead the students into a completely new world, ignoring all their prior knowledge
and common sense. Nowadays, in many Dutch mathematics lessons, the teachers
encourage their students to use their common sense. This is the result of a silent
revolution in mathematics education. In this chapter I will offer a collage of the
work of several mathematics educators, who have helped to put the common sense
of students in the middle of Dutch mathematics education. We will meet students
from age 6 to 16 working with whole numbers, fractions, geometry and exponential
functions and we will discover how their common sense plays a crucial role in the
development of their mathematical knowledge.

4.1 Introduction

A long time ago, at the start of my first mathematics lesson as a secondary school
student, the mathematics teacher told us: “Forget what you know, here you will learn
all sorts of new things.” As if we could delete all our prior knowledge and would
not try to make sense of all these ‘new things’. This is an illusion. An echo of this
view still survives in places. When I had a discussion with a mathematics teacher at
the university and asked him how they orientate themselves on their students’ prior
knowledge, he answered: “We just build the whole mathematics as new, so prior
knowledge is not necessary.”

In the meantime, in primary schools and later in secondary schools, a silent rev-
olution in mathematics education has taken place and nowadays the motto in Dutch
mathematics education is ‘use your common sense!’ (see Dekker, 1996).
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4.2 Common Sense of Young Students

What is the common sense mathematical knowledge of students before they get any
formal mathematics education? Marja van den Heuvel Panhuizen (1996) researched
this question. She developed a paper-and-pencil test to find out how much common
sensemathematical knowledge and capabilities young students at the age of 6 already
have before they start the formal mathematical course at primary school. She gave
the test to 441 students in 22 different primary schools. The teachers only gave a
short oral instruction. The test was very visual and consisted for instance of adding
up the dots on two dice in the context of a board game, counting down in the context
of a missile launch, and subtracting without countable objects in the context of
buying sunglasses with a given amount of pocket money. She also gave the test to
a group of experts, consisting of school consultants, teacher educators, educational
researchers, educational developers and a fewprimary school teachers. She compared
their answers with the answers of the students. The experts clearly underestimated
the knowledge of the students. The task of adding up the dots on a dice was expected
by the experts to be answered correctly by 45% of the students, while the actual
result was 80%. The counting down task was expected to be answered correctly by
25% of the students, while the actual result was 65%. And for the task on buying
sunglasses the experts thought that close to 0% of the students would give a good
answer, while the actual result was 40%!

The research findings of Marja van den Heuvel-Panhuizen were very striking
and gained much attention. Several countries, including Germany, have repeated the
research with similar outcomes.

So, students acquire more mathematical knowledge in realistic contexts of their
life than we are aware of. And as wewant to connect the mathematical knowledge we
want them to learn with the knowledge they already have, we can use these contexts
and make the mathematics in them the object of discussion in the classroom, as
you can see in many mathematical learning materials for primary schools in the
Netherlands.

4.3 A ‘Math Mom’ at Work with a Small Group

In many primary schools the parents are asked to participate in reading with some
children. A mother of one of the children in a primary school in the centre of Ams-
terdam suggested to the school that she could do something with mathematics as a
so-called ‘math mom’. The school reacted very positively and her daughter’s teacher
suggested doing something extra with fractions. Many students find that subject
problematic. The school has a mathematics textbook series based on Realistic Math-
ematics Education (RME), but the reality in it is often restricted to pictures and the
tasks are often meant for individual work with paper and pencil. To compensate for
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this, the math mom combined her knowledge about fractions in the context of piz-
zas (Treffers, Streefland, & De Moor, 1994) with her knowledge about collaborative
learning (Dekker & Elshout-Mohr, 2004). On several afternoons, you could see her
working with a small group of three children in Grade 4, where they played that they
each were going to buy small pizzas to be shared by the four of them, mom included.
The pizzeria had a special offer: three small pizzas for 5 euro. So, they had to divide.
On the table, there were circles of cardboard of different colours, representing dif-
ferent types of pizzas; yellow could be cheese, red could be tomatoes or salami and
green could be basil or olives. There were also scissors, pencils and rulers for the
dividing.

The first child chose a type of small pizza and the math mom said that the three
pizzas of this type would be served one after the other. The children discussed how
to divide the pizzas fairly without having to wait for the next one to be served. The
math mom intervened as little as possible. She only did so when she noticed that a
child was not taking part in the discussion or was not ‘heard’. The children decided
that they would divide each pizza in four pieces and so they did. Each of the four
persons ended up with ¾ pizza, and then the math mom asked them to write that
down in a fraction problem that reflects this action. Again, they discussed it and then
decided to write it as: ¼ + ¼ + ¼ = ¾.

Then the second child chose another type of pizza and the math mom told them
that now two pizzas would be served at the same time and the third one a bit later.
Again, the children discussed how to divide fairly without waiting until the third one
arrived. They decided that it made sense to give each participant half a pizza and
divide the last one in four pieces later. Then they discussed what fraction problem
reflected this division and they came up with: ½ + ¼ = ¾.

The third child also chose a particular type of pizza, and the math mom told them
that now all pizzas would be served at the same time. The children decided that they
would each take one pizza and that each of them would give the math mom a quarter
of their pizza: 1 − ¼ = ¾.

So, in each situation each person ended up with ¾ of a pizza. But each situation
was a different one and so was the fraction problem that reflected this situation.

The children clearly enjoyed this ‘play’, and the math mom did as well. But as she
also wanted them to reflect on the work, she asked them at the end to individually
describe in a little story one of the situations, visualise it in a drawing and write
down the problem that fits this situation. Most children chose their ‘own’ division,
but some described them all and with beautiful drawings, even a comic was drawn;
and with the appropriate problems (Fig. 4.1). Mathematics can be fun, especially
when you bring to life the situations in which it can develop.
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Fig. 4.1 Visualisation of 1 − ¼

4.4 A Russian Pioneer Within the Dutch School

Tatiana Ehrenfest-Afanassjewa (1876–1964), a Russian mathematician, came to the
Netherlands in 1912 with her husband Paul Ehrenfest, the physicist, who had got a
job at the University of Leiden. Tatiana had a deep interest in mathematics educa-
tion. In Russia, she had developed an introductory course for geometry. The course
was based on the idea that students already have developed intuitive geometrical
notions in reality. These notions form the start of the course. In her Übungensamm-
lung (Ehrenfest-Afanassjewa, 1931, p. 27), she described all sorts of problems to be
analysed by the students. Problems like:

Warum läuft der Mond uns nach? Warum laufen uns die nahen Gegenstände rascher vorbei,
als die entfernten, wenn wir etwa in einem Zuge fahren? – Eine schematische Zeichnung
machen.1

In the Netherlands, Tatiana started to invite mathematics teachers and mathemati-
cians into her home in Leiden to discuss mathematics education and her ideas about
it (DeMoor, 1993). Most of her guests were ‘shocked’ by her radical ideas, but some

1Why does the moon run after us?Why do near objects pass us more rapidly than distant ones when
we ride, say, in a train? Make a schematic drawing (translated by the author).
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of them became really interested and tried to put her ideas into practice. Dina van
Hiele-Geldof, for example, developed her lessons on tiles and geometry and anal-
ysed the classroom conversations and student work wonderfully in her dissertation
(VanHiele-Geldof, 1957). There was also a Germanmathematician who had come to
the Netherlands and was impressed by Tatiana’s revolutionary ideas: Hans Freuden-
thal. He discussed these ideas in her house and in public (Ehrenfest-Afanassjewa
& Freudenthal, 1951). Later he stimulated developers of learning materials to use
her ideas and now in many Dutch mathematics school books for secondary school
subjects like looking along lines, or vision geometry, form a substantial part of
geometry. The following exercise is used even in primary schools. It is taken from
the Ehrenfest-Afanassjewa’s (1931, p. 25) Übungensammlung:

Es sollen sich drei Schüler längs einer Geraden vor die Klasse aufstellen – ohne irgend
welche Hilfsmittel zu gebrauchen; ein vierter Schüler soll sie, ebenfalls ohne Hilfsmittel,
kontrollieren. – Worauf beruht die Möglichkeit dieser Aufgabe?2

4.5 A World of Packages

Wim Sweers was a teacher at a secondary school where many students had problems
with mathematics. The subject he focused on was three-dimensional mathematical
shapes, which is always a very difficult subject. Walking through the school and
thinking about problems to introduce the subject, he noticed a glass case with many
beautiful packages, made by his own students! He realised that they had to do a lot
of implicit mathematics to create these packages. He decided to bring the world of
packages into the classroom and so he did. He asked his students to collect different
empty packages from home and he invited them to sort them according to function,
material, colour and also according to the mathematical shapes which he wanted to
teach them. Then the students were invited to deconstruct the packages and recon-
struct them again, and so they discovered all sorts of characteristics of the shapes.
And step by step he guided his students from the world of packages into the world
of mathematical shapes, which were now much more concrete to them than they had
been. He got the feeling that his students would now be able to develop some spatial
insight.

This strong idea has found its way into Dutch mathematics school books and also
into mathematics schoolbooks abroad, for instance in Portugal.

2Three students should stand in a straight line in front of the class without using any tools; a fourth
student should check them, also without any tools. What makes this problem possible? (translated
by the author).
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4.6 A Real Problem in the Classroom

During one of my visits to a mathematics lesson by teacher Lidy, she introduced
a problem about cleaning a brush after painting. She said that she had painted her
garden fence and that she wanted to clean the brush. She found only a little bit of
turpentine in a bottle and she wondered what she could do best: pour the turpentine
in a jam jar and clean the brush, or first divide the turpentine over two jam jars and
clean the brush in the first jar and then in the second. The students worked in small
groups and the teacher gave them all the information they wanted. They concluded
to their own surprise that it was better to divide the turpentine over two jam jars.
Then the teacher went on and asked them what would happen if the turpentine were
divided over more cups, and more and more… and so she was planning to draw her
students into the world of formal mathematics with the number ‘e’ at the horizon.

One small group of students was arguing a lot. They wondered whether it would
work to clean a brush in just a little bit of turpentine. They remembered a test they
did in chemistry where they put sugar in water and noticed at a certain moment that
the sugar did not dissolve any more. They thought that could also happen when the
quantity of turpentine was too small. I witnessed their discussion. These students
clearly stopped in front of the door of formal mathematics. Their common sense
prevented them from passing it. Later I told a colleague from abroad about this
conversation and she reacted that the teacher should have told the students that in the
mathematics lesson it is all about mathematics. I heard an echo of an old message…
I also told teacher Lidy about my observation and she answered: “I should have
discussed the problem with the chemistry teacher first.”

Lidy made my heart glow. She clearly is a member of the Dutch School!
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Chapter 5
Dutch Mathematicians and Mathematics
Education—A Problematic Relationship

Harm Jan Smid

Abstract Mathematics as a compulsory school subjectwas introduced in theNether-
lands in the first decades of the 19th century. While in the beginning there was
some involvement of Dutch academic mathematicians, later on their engagement
with mathematics teaching was only marginal. That changed in the second half of
the 20th century. Hans Freudenthal, professor of mathematics in Utrecht, became
deeply involved in mathematics teaching. He became the first director of the IOWO,
the Institute for the Development of Mathematics Education, that dominated Dutch
mathematics teaching from the 1970s on. In the 1960s, under the influence of New
Math, other mathematicians had already played a role in the modernisation of the
teaching of mathematics, but from the 1970s on, their role became minimal again. In
the first decade of the 21st century the dominance of the ideas of RealisticMathemat-
ics Education elicited protests frommathematics departments at several universities.
This criticism induced fierce and often heated debates. At the moment, these discus-
sions have calmed down and it seems that a new understanding between the worlds
of school and university mathematics is growing.

5.1 Start of a Tradition of Academic Involvement
in Mathematics Teaching?

In September 1826, D. J. van Ewijck, one of the highest-ranking government officials
of the Ministry of the Interior and in charge of educational affairs, wrote a letter to
all Latin schools1 about the teaching of mathematics. In this letter, he explicitly
recommended the use of the textbooks of J. de Gelder, professor of mathematics at
the University of Leiden. De Gelder, a former schoolteacher and now a prominent

1Latin schools were grammar schools for boys of approximately 12–18 years old to prepare them
for university.
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mathematician, wrote books on arithmetic, algebra and plane geometry, especially
destined for use in Latin schools (Smid, 1997).

By advising these books, the Dutch government sailed an intermediate course
between Prussia and France. In Prussia, the mathematics teachers in the gymnasia
(grammar schools) enjoyed complete freedom in the choice of their textbooks, in
France, the government strictly controlled which books were used. In Prussia not
seldom the teacher did write his own textbook, or did not use one at all, while in
France the government stimulated, or even required the use of textbooks written by
eminent mathematicians.

The letter of Van Ewijck, and the books of De Gelder, who did not only write
textbooks, but was involved inmanyways in the teaching of mathematics, might well
have been the start of a tradition of academic involvement inmathematics teaching. To
call such a tradition into existence, two conditions had to be fulfilled. The government
should stimulate and facilitate an active role for mathematics experts in secondary
education. These experts themselves had to be interested in fulfilling such a role, and
be willing to spend time on it. In the persons of Van Ewijck and De Gelder, these
requirements were met.

5.2 Aloofness of the Government

But the actions of Van Ewijck and De Gelder were not followed by further steps. On
the contrary, the growing political influence of liberally orientated politicians, such
as J. R. Thorbecke, who wanted government interference with internal school affairs
to be as minimal as possible, made these impossible. The laws of 1863, in which the
HBS,2 the Dutch variant of the German ‘Realschule’ was created, and of 1876, which
did the same for the modernised gymnasia, gave only a short outline of the content
of the required mathematics curriculum (Krüger, 2014). Schools and teachers were
left a great amount of freedom to organise their teaching.

The main advisor for the law of 1863 was D. J. Steyn Parvé, a government official
who had been a mathematics teacher at the gymnasium in Maastricht. Steyn Parvé
was a competent mathematician, but not a productive researcher and had not had
an academic career. Soon after the introduction of the law, he was appointed as one
of three inspectors for the HBS. The corps of inspectors, three3 for the HBS, one
of whom was always a mathematician, and one for the gymnasia, constituted the
intermediary between the government and the schools. They were usually former
teachers, who had made a career as headmaster of a HBS or rector of a gymna-
sium. They were not chosen for their scientific reputation, but for their experience
in education. Some inspectors, like Steyn Parvé or, later, E. Jensema, became quite

2Hogere burgerschool; the former Dutch general secondary school for 12- to 17-year-olds intended
as a practically oriented education for higher functions in industry and trade.
3At the start of the HBS three inspectors were appointed, but the number varied over the years.
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influential in the field of mathematics teaching, and the government usually followed
their advice.

Towards the end of the 19th century, the political discussions about religious
schools and their financing, the so-called ‘school war’, forced the government to even
greater restraint in internal school affairs. After the compromise that was reached in
1917 ended the conflict. A reserved attitude towards internal school affairs remained
the ultimate wisdom. Until the 1960s the Dutch government did not want to play a
prominent role in schools. “No state pedagogics”, was its credo.

5.3 No Role for the Experts

If the experts wanted to play a role of any importance in secondary education or exert
serious influence on it, they would have had to achieve this on their own strength,
without government support. That would not have been easy.

For example, changes in the curriculumwere usually discussed by teacher unions,
or special committees of teachers, and then had to pass the corps of inspectors before
the government took any decision. University professors did not have any formal role
in this process. Theyplayed somepart in thefinal school examinations, through taking
part in oral examinations and controlling the grading of written assignments. But
these written assignments were devised by a select group of teachers and determined
by the inspectors, the experts had no say in this. Nor did they have any involvement
with the textbooks. The government left the production of textbooks to the market;
textbooks were written by teachers and teachers were free to choose those books
they liked most.

If the group of university experts had shared some common ideals and goals
about mathematics teaching, and if they had combined their efforts, they might still
have gained some influence. But then they should have been willing to spend time
and energy on a more than incidental basis on questions and problems concerning
mathematics education.

That was not the case. Involvement by professional mathematicians in math-
ematics teaching for secondary schools remained incidental and the concern of
isolated individuals. The development of the Wiskundig Genootschap (Mathemat-
ical Society) is an example of this. Originally founded in 1779 as a society for
mathematics practitioners and schoolteachers, in the 19th century it became a soci-
ety for research mathematicians, and school teachers hardly played a role any-
more. The society never formulated any advice or proposal concerning mathematics
education.

An example of an expert who at least was interested in teaching and education
was D. Bierens de Haan, professor in mathematics in Leiden in the second half of
the 19th century, with a good international reputation. He had been a mathematics
teacher in Deventer, and was an elementary school inspector alongside his profes-
sorship, he wrote some mathematics textbooks (including an adaptation and trans-
lation of Lacroix’s Elements de Geometrie) and played a minor role as an advisor
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of Thorbecke concerning the law of 1863. He collected an impressive collection of
books concerning (mathematics) education, which is now in the University Library
of Leiden. Even so, one cannot say that he had any important or lasting influence on
secondary mathematics teaching.

There were more mathematicians who were interested in teaching, like
G. Mannoury and D. van Dantzig. Mannoury was a professor in Amsterdam, Van
Dantzig was one of Mannoury’s students and after World War II also a professor in
Amsterdam. In the late 1920s they wrote some articles about mathematics teaching,
but the ideas of Mannoury and Van Dantzig differed so much from the mainstream
ideas in those days, that already for that reason alone they had hardly any influence
(Smid, 2000). They criticised the general formative value of mathematics and trans-
fer to other subjects. Another example of a professional mathematician who was
interested in mathematics teaching was F. Schuh, professor in Delft and Groningen.
Not only did he publish many articles about mathematics especially for teachers,
but he even wrote a book on the didactics and methodology of mathematics (Schuh,
1940). Schuh did not propagate modern mathematics to the community of mathe-
matics teachers but restricted himself to then already outdated 19th century topics.
His book on didactics and methodology is not written for secondary education, but
for junior students in the sciences and technology and their lecturers. It is mainly
a collection of tips and tricks, for example, how to use a textbook or solve certain
types of mathematics problems or about the best way to pass an exam. There were
more professors in Delft who were interested in mathematics teaching, but as a rule
they were even more conservative. Euclides, the magazine for mathematics teachers,
founded in the early 1920s, regularly published articles by mathematics professors,
for example, their inaugural addresses (with a photo of the new professor), but these
seldom had to do with the teaching of school mathematics.

A far more interesting person was Tatiana Ehrenfest-Afanassjewa, born in Kiev
in Ukraine. She was a physicist in the first place, but had also studied mathematics
in Göttingen with Klein and Hilbert. She had no official position at a university, but
being the wife of Paul Ehrenfest, the successor of Lorentz, in 1912 she came to live
in Leiden. She wrote some interesting articles on mathematics teaching, published
her now famous Übungensammlung (Ehrenfest-Afanassjewa, 1931), and organised
a discussion group about mathematics teaching (De Moor, 1999). Before World War
II, this group consisted mainly of outsiders and had little influence, but that changed
after the war.

Things might have been different if the only Dutch mathematician of great inter-
national reputation, L. E. J. Brouwer, had been interested in teaching. But Brouwer
had no interest at all. In the Netherlands, there simply was no Felix Klein, Émile
Borel or Guido Castelnuovo.

So, for a long timeDutchmathematics teaching received little influence or impulse
from the scientific community. To a large extent, mathematics teachers could settle
their own affairs, not only at the HBS and gymnasium level, but even more so at the
numerous MULO4 schools.

4(Meer) Uitgebreid Lager Onderwijs ((Further) Extended Primary Education).
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5.4 A Stagnating World

In a way, the system could be called democratic: teachers could have their say con-
cerning changes, and developments and drastic interventions from outside did not
occur. But there was a price to be paid for this. After the attempts to renew Dutch
mathematics teaching in the 19th century, a long period of conservatism and stagna-
tion followed. The world of Dutch mathematics teaching was trapped in isolation.
For instance, the first international reform movement, initiated by Felix Klein, had
hardly any influence in the Netherlands (Smid, 2012). In the Commission Interna-
tionale de l’ÉnseignementMathématique (CIEM), the forerunner of the International
Commission on Mathematical Instruction (ICMI), Dutch mathematicians played no
role of significance. The most prominent schoolbook author of the first half of the
20th century, and founder of several journals for teachers, P. Wijdenes, claimed that
he never consulted a foreign secondary school textbook.

Of course, there were some reform attempts, mainly to include calculus into the
curriculum. The attempt that at least had a partial result was the one led in the 1920s
by E. J. Dijksterhuis, who later became famous as a historian of science. He was
progressive concerning the teaching of calculus, but an outspoken conservative on
the teaching of geometry. As a historian, Dijksterhuis, who later became professor in
the history of science in Utrecht, but who was an HBS teacher at that time, had ample
international contacts, but hardly any concerning mathematics teaching. He was
aware of the publications of Klein, and at a conference in Groningen in 1925 he had
a public discussion with Walter Lietzmann, rejecting all his ideas about modernising
mathematics teaching, but there are no indications that he was really interested in
modern developments in teaching abroad. Dijksterhuis’ attempts on the introduction
of calculus received hardly any support from the academic community. They were
even opposed by some academic groups, such as the mathematics professors at the
Technical University in Delft, who preferred to keep the HBS as it was in the 19th
century.

On the whole, the result was stagnation (Van Berkel, 1996). Around 1955, the
world of Dutch mathematics teaching had a surprising resemblance to that of 1875.
Change would come in the 1960s, under pressure from the government, and led by
experts from outside.

5.5 The Times They Are A-Changin’

In the 1950s, the pressure on changing the status quowas slowly building up. First of
all, the modernising society created new jobs and roles for mathematicians, andmore
generally, for experts in the sciences. Statistics became more important, not only in
mathematics and the natural sciences, but also in the social sciences. The idea that the
teaching of mathematics was only important for most students as ‘gymnastics for the
mind’ became untenable. Mathematics and good mathematics education became an
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economic necessity. The idea of transfer, that is, the idea that learning mathematics
would automatically make you a better thinker, was more and more criticised. On
top of that, within the academic community of mathematicians there was a growing
concern about the gap betweenwhatwas essentially 19th century schoolmathematics
and modern, 20th century mathematics. These were not national, but international
trends, but unlike in the years before World War II, the Netherlands could no longer
afford an isolated position.

A sign of the growing concern and interest for mathematics education within the
community of mathematics experts was that in 1954, the Wiskundig Genootschap
founded the Nederlandse Onderwijs Commissie Wiskunde (Dutch Committee for
Mathematics Education), a committee in which professional mathematicians and
mathematics teachers cooperated. The committee, soon chaired byHans Freudenthal,
operated also as a subgroup of ICMI.

Individual experts also showed their interest. One of them was Van Dantzig,
mentioned before as a student of Mannoury. In some articles, he had published
around 1930 as a young man he had argued that the way mathematics was taught
was quite useless formost students.He had not obtained any hearing, and he remained
silent on this subject for over twenty years. He was now professor of mathematics
in Amsterdam, had specialised in statistics and was deeply involved in consulting
activities for industry and society. In 1955 Van Dantzig wrote a report for ICMI, The
Function of Mathematics in Modern Society and Its Consequences for the Teaching
of Mathematics (Van Dantzig, 1955). A translation was also published in Euclides,
the Dutch magazine for mathematics teachers. It did not have immediate effects, but
it certainly had influence on the long term.

There are more examples of mathematics professors who wrote articles on mathe-
matics teaching in the same spirit. For instance, in 1958, J. C. H. Gerretsen, professor
of mathematics in Groningen, wrote an article in Euclides about the goals of math-
ematics education. The article was written on the occasion of the new curriculum
of 1958, and it stressed the need of the modernisation of mathematics teaching on
account of the now crucial role played by mathematics in modern industrial society.
The article ends with the prophetic words that the new curriculum could be seen as
a deserving step forwards, but that it should not be seen as a definitive curriculum,
not even as a programme for the long term (Gerretsen, 1958).

Not all mathematicians shared this view about the role of mathematics in society.
The logician E.W. Beth, known for his cooperationwith Jean Piaget (see Piaget et al.,
1955), maintained the point of view that the introduction of axiomatic reasoning was
the ultimate purpose of mathematical instruction, but he was an exception.

The involvement of most mathematicians like Van Dantzig and others in those
years can be characterised in two ways: (1) it had as a starting point their concern
about the content of school mathematics, and (2) it had an incidental character and
did not lead to a permanent involvement of the authors in the affairs of mathematics
education.

Neither of these two characteristics can be applied to the activities in mathematics
education of another mathematician: Hans Freudenthal. He became seriously inter-
ested in the didactics of mathematics during World War II, and after that he soon
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joined the Wiskunde Werkgroep (Mathematics Working Group), a continuation of
the discussion group led by Tatiana Ehrenfest-Afanassjewa and now rapidly gaining
importance as a focal point for all who had the revitalisation of Dutch mathematics
teaching as their goal. Within a short time Freudenthal became the chair of theMath-
ematics Working Group, which was the starting point of a permanent involvement in
mathematics education. Of course, Freudenthal was well aware of the outdatedness
of Dutch school mathematics. He and his ideas played an important role in the real-
isation of the new curriculum of 1958, which introduced calculus to the curriculum
and examination programmes, and removed descriptive geometry (La Bastide-van
Gemert, 2015).

But unlike other mathematicians who were interested in mathematics educa-
tion, Freudenthal’s focus was primarily on good teaching, not on modernising the
curriculum. In a letter, written in August 1961, Freudenthal wrote:

I have argued several times, as is well known, that I see the modernisation of the curriculum
(…) not as an urgent problem, not because I should dislike modern mathematics, but because
of the fact that in several proposals the introduction of modern mathematics is seen as a
principal goal. On the contrary, I see as the first and only urgency the improvement of
mathematics education. (Wijdeveld, 2002, p. 202) (translated from Dutch by the author)

Within ten years, Freudenthal’s point of view would become the dominant one.
That would have great consequences for Dutch mathematics teaching.

5.6 The Big Bang

The letter by Freudenthal cited in the previous section was addressed to A. F. Monna,
then lecturer, later professor of mathematics at the University of Utrecht. Monna,
who also had made a career as a government official at the Ministry of Education,
was the secretary of the Commissie Modernisering Leerplan Wiskunde (CMLW;
Commission Modernisation Mathematics Curriculum).

That commission was a new development in the world of Dutch mathematics
teaching. It was appointed in 1961 by the Dutch government and had as its task to
advise the government about the modernisation of the mathematics curriculum. The
founding of the commission was a direct consequence of the Royaumont confer-
ence. Convinced of the urgency of such a modernisation, the government did not
want to wait for initiatives from mathematics teachers themselves, and appointed a
commission that consisted of ten professors and a lecturer in mathematics, a teacher
educator, two inspectors and only four teachers. Its chairman was H. T. M. Leeman,
mathematics professor at the University of Amsterdam, who had attended the Roy-
aumont conference. The other twoDutch delegates, L. N. H. Bunt, a teacher educator
and P. G. J. Vredenduin, a mathematics teacher and textbook author, who went to
Royaumont were also appointed. Freudenthal was one of the committee’s members.
As the State Secretary for Education stated, the CMLWhad the explicit task to advise
the government about
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which modern parts of mathematics could, seen from the viewpoint of science, be apt for
introduction in schools preparing for university, in view of the reduction of the gap that exists
between university and school mathematics”, as the deputy minister of education formulated
it in his address on occasion of the installation of the committee. (Euclides, 1962, p. 146)

There were some additional questions, about special programmes for mathemati-
cally gifted children, possible experiments in schools concerning the teaching of
modern mathematics, and courses to introduce older mathematics teachers to mod-
ern mathematics, but the main purpose was fairly straightforward: the modernisation
of mathematics curricula in schools preparing for university.

Freudenthal had not attended the Royaumont conference as he did not expect it
would be very important. That was a mistake, as he admitted later, and due to his
stay in the United States, Freudenthal had also missed the first meeting of the new
commission, so in a way he was lagging behind. As soon as he had returned to the
Netherlands, he took action, as the letter of August 1961 shows. He made it clear that
the main and official task of the commission, the modernisation of the curriculum,
was not his first priority. He had exerted considerable influence on the curriculum of
1958, with which he was rather content, and he saw no reason for immediate change.
In its first meeting, the commission had mainly discussed possible changes in the
examination programmes, but Freudenthal had other priorities. He wanted to start
with the lower grades.

In his autobiography, Freudenthal (1987) suggests that theCMLWinitially viewed
him as an ‘enfant terrible’, and that the subgroup that was created on his request
and that should concern itself with the lower grades, was no more than a kind
of playground specially created for him. That seems rather unlikely. At that time,
Freudenthal was already without a doubt the most outstanding mathematician within
the commission, and moreover, he was the only one who had already been deeply
involved in the didactics of mathematics, both nationally and internationally, for
more than fifteen years. He soon succeeded in bending the commission to his will.

In the first years, most of the commission’s work focused on two aspects: devel-
oping courses for teachers to make them acquainted with modern mathematics, and
carrying out teaching experiments, including one for the lower grades on transforma-
tional geometry and one for the higher grades on calculus. The courses for teachers,
that attracted a large number of participants, were in line with the terms of reference
of the commission, the teaching experiments in fact much less so.

The work of the CMLW was complicated by a development that had nothing to
do with the teaching of mathematics itself. Finally, in the 1960s the government was
successful in replacing the patchwork of 19th century laws on education with one
comprehensive law, creating a complete new school system, with new school types.
The Ministry of Education asked the commission to devise curricula for all new
school types, a much larger task than foreseen at the start. After some years, even
mathematics for elementary schools became a topic of study for the commission. In
the end, the commission was able to present a complete set of curricula for all new
school types.

To do all this work, the CMLW appointed a substantial group of co-operators,
mainly former mathematics teachers. In the early 1970s, this group formed the core
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of the newly-founded IOWO,5 now Freudenthal Institute (FI). Freudenthal became
its first director.

Halfway through the 1960s, Wimecos,6 one of the two then existing mathematics
teachers’ associations, tried to devise a program for one of the new school types on
its own, but its effort was soon over taken by the commission (Wijdeveld, Verhage, &
Schoemaker, 2000). In the 1970s, the union tried again to gain influenceon curriculum
formulation by setting up a didactical working group for that purpose, but to no avail.
Constructing curricula was definitively out of the hands of teachers and in the hands
of the experts.

For most of the mathematics professors, the work in the CMLW must have been
a bewildering experience. They were mathematicians in the first place, with some
interest in mathematics teaching. They were asked to advise the government in their
spare time about the modernisation of the mathematics curriculum of schools prepar-
ing for the university, which seemed a pretty simple and straightforward task. But
their commission ended in a complete institute with more than a dozen of full-time
collaborators, all of them with a primarily didactical orientation, performing tasks
with which most of these mathematics professors had hardly any affinity. What was
their role? Apart from Freudenthal and Van der Blij, a younger colleague of Freuden-
thal who shared many of his ideas and who soon succeeded Leeman as chair of the
CMLW, did they still have any influence?

The archives of the CMLW have been lost, so it is impossible to reconstruct
the complete history of the commission.7 But one conclusion can be drawn. When
the committee started its work, it seemed as if the experts, mainly the mathematics
professors, had at last obtained considerable influence in the world of mathematics
teaching, at the expense of the traditional organisation of teachers of mathematics.

Then, years later, the picture was completely different. The community of profes-
sional mathematicians had again disappeared from the educational scene, and would
not return there for decades. The mathematics teachers’ unions had indeed lost a
great deal of their influence which was now in the hand of another group of experts:
full-time didacticians, first only within the IOWO and its successors OW & OC8

and FI, later also in SLO (Netherlands Institute for Curriculum Development). Of
course, the first two directors of the IOWO, Freudenthal and Van der Blij, were
excellent mathematicians, but in their role as IOWO directors they acted much more
as didacticians than as representatives of the group of mathematics experts. Their
successors, J. de Lange and J. van Maanen, had made their career in teaching, not in
mathematics research. Didactical experience and expertise had become much more
important than mathematical brilliance.

5Instituut voor de Ontwikkeling van het Wiskunde Onderwijs (Institute for the Development of
Mathematics Education).
6Vereeniging van Leeraren in de Wiskunde, de Mechanica en de Cosmographie aan Hoogere
Burgerscholen en Lycea (Association of teachers of mathematics, mechanics, and cosmography).
7The archives of the CMLW are recently rediscovered in the Central Archives of the Ministery of
Education in The Hague.
8Onderzoek Wiskundeonderwijs en Onderwijs Computercentrum (Mathematics Education
Research and Educational Computer Centre).
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5.7 Return of the Mathematicians

Freudenthal and his institute dominated the Dutch world of mathematics education
from the 1970s on. In the 1980s, most of the examination programmes in secondary
school had been reformed and contained at least some elements in the spirit of
Realistic Mathematics Education, and in the 1990s the same happened with the
programmes of the lower grades in secondary education and the textbooks in primary
education. All these and other changes to the programmes were of course the cause
of some discussion, but on the whole, the world of primary and secondary education
agreed with the way things were going.

Professional mathematicians and their organisations seemed hardly interested.
Typically, at most universities, teacher education was removed from the mathemat-
ics departments and centralised under the authority of general educationalists. The
mathematics departments did not protest. Educating a mathematics teacher was not
what they were interested in.

That changed in the first decade of the 21st century. Universities, especially the
universities of technology, started to complain about the lack of algebraic skills of
their first-year mathematics, science and technology students. According to these
departments, their students were not able to handle the simplest techniques. They
blamed the new programmes and criticised the extensive use of (graphic) calcula-
tors in mathematics teaching in secondary schools. Universities started to organise
entrance tests for their first-year students, and offered courses to repair their short-
comings, sometimes even obliging their students to follow these courses if they had
failed to pass the tests. Surprisingly, the students joined in with the complaints of
their lecturers and exerted pressure to theMinistry of Education to putmore emphasis
on the teaching of algebraic skills in school.

Another point of criticism concentrated on the teaching of arithmetic in primary
schools. According to the critics, national and international evaluations showed that
the performance of Dutch children was deteriorating, and the critics blamed the
influence of Freudenthal and his school for that.

The main initiator of all this criticism was J. van de Craats. He had been lecturer
at the University of Leiden, professor at the Military Academy in Breda and then
professor at the University of Amsterdam. In the beginning, he had been quite enthu-
siastic about the Freudenthal reform, and as chairman of one of the committees that
were charged with drawing up examinations questions, he had had some responsibil-
ity for the developments in the 1980s and early 1990s. But in the long run he became
doubtful about their results and he started to sharply criticise Freudenthal’s work.
Van de Craats gained support from professors of other universities, like F. Keune
and K. Landsman from Nijmegen, and M. Pelletier from Eindhoven (Van de Craats,
2008).

The result was a lot of often heated discussions, since the advocates of Realistic
Mathematics Education of course defended their positions. The discussion about the
teaching of arithmetic, which ran the most heated, led to a request by the State Secre-
tary for Education to the Royal Dutch Academy of Sciences (KNAW) to investigate
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the matter. The KNAW appointed a commission with some outstanding mathemati-
cians, like J. K. Lenstra and R. Tijdeman, with specialists in educational research
like the Belgian L. Verschaffel, and with field specialists in arithmetic teaching like
M. Kool. Themain conclusion of the report (KNAW, 2009) was that there was indeed
reason for concern, but that there is in fact no hard evidence for better results either
for the ‘realistic’ school or for the ‘back to basic’ movement. Another important
conclusion was that the quality and know-how of the teacher are the main factors
in explaining teaching results, and that it is beyond doubt that in this respect, in the
last decades, students enrolled in teacher education for elementary school teachers
who had insufficient knowledge of mathematics and did not receive enough edu-
cation to remediate their mathematical competence. As a result of this conclusion,
the demands on arithmetic for future teachers have been raised considerably, a mea-
sure that has the approval of all concerned. Another consequence of the discussions
on arithmetic teaching was that the government started to implement compulsory
tests on arithmetic in secondary education. However, that measure became subject
of severe criticism.

The discussion on algebraic skills also had its effects. During the last decade,
the emphasis on skills in the final examinations was gradually raised, which had
its influence on teaching in school. In the in 2005 established commission for the
revision of the mathematics curriculum, the Commissie Toekomst Wiskundeonder-
wijs (cTWO; Commission Future Mathematics Education), the problem of algebraic
skills received more attention than in the years before. While in former curriculum
committees, the dominance of the FI and the SLO was considerable, in cTWO that
was not the case. The committeewas chaired byD. Siersma, a professor ofmathemat-
ics at Utrecht University and numberedmore professional mathematicians, including
M. Pelletier, one of the critics of the FI. The committee counted only one member
of the FI, P. Drijvers, who acted as the secretary of the committee. Other didacti-
cians of mathematics were also appointed, as well as teachers and representatives of
the Nederlandse Vereniging van Wiskundeleraren (NVvW; the Dutch association of
mathematics teachers). In a way, cTWO signified the official return of professional
mathematicians and teachers and their union to the discussions about mathematics
education in secondary school. The work of the committee was critically followed by
another committee explicitly appointed by the minister for that purpose. This com-
mittee was the so-called ‘Resonance group’, chaired by Van de Craats and mainly
consisting of university lecturers and students; another indication of the changing
situation.

5.8 A New Start?

The heated and sometimes unfriendly discussions about mathematics teaching also
had as a result that the official organisations of mathematics teachers and university
mathematicians began to see that such discussions did not enhance their prestige, and
that it should be wise to seek ways for mutual understanding and even cooperation.
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TheWiskundig Genootschap realised that mathematics teaching in secondary educa-
tion was also their concern, and that they could not restrict themselves to the realms
of scientific research. The NVvW, on the other hand saw that the demands of the
teacher education institutions and universities had to be taken into account and that
support of and cooperation with professional mathematicians and their organisation
would only strengthen their own position. They formalised their new understand-
ing by jointly establishing Platform Wiskunde Nederland (Platform Mathematics
Netherlands), to promote the position of mathematics as a whole and to function as
the common voice for the mathematics community.

Except perhaps for some diehards, nobodywants a return to the 1960s and nobody
wants to abolish all that has been introduced since then, including the institutions
that have been established. But it is also clear that in the future a new equilibrium
must be found, not only in the curricula, but also between all involved inmathematics
education: the teachers who have to do the hard work, and the experts on both sides,
the didacticians and the mathematicians. The indications for such cooperation do not
look too bad.
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Chapter 6
Dutch Didactical Approaches in Primary
School Mathematics as Reflected in Two
Centuries of Textbooks

Adri Treffers and Marja Van den Heuvel-Panhuizen

Abstract This chapter contains an overview of the most important textbook series
used in the Netherlands from 1800 to 2010. We distinguish five time periods, and
for each period we highlight the textbook series that are most characteristic. To
describe the textbooks that were in fashion in the successive periods we distinguish
three categories of textbooks: procedural, conceptual, and dual textbooks. The dual
textbooks have elements of the first two. For the procedural textbook series, which are
also referred to as ‘mechanistic’, memorisation ofmathematical facts, automatisation
on of operational procedures and recognising types of problems are the primary
interest. Application is only considered at the very end of the teaching trajectory,
and then rarely. Smart, flexible (mental) calculations and estimating are not part of
the program. The conceptual textbook series have an opposite approach. In learning
mathematical facts and procedures, understanding is highly valued, and applications
are included from the start as the basis for this. Number sense, flexible (mental)
calculation, and estimation are central, next to algorithmic calculation. Students can
design their own problems, develop solutionmethods andwork on their own level. As
expected, using different textbook series with different content and teachingmethods
results in pursuing different goals in mathematics education, which in turn results in
different learning outcomes, as has been shown by national evaluations of progress
in educational achievement.
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6.1 Introduction

KnowingDutchmathematics textbooksmeans knowing a lot about Dutchmathemat-
ics education. Especially in primary school, mathematics textbooks in the Nether-
lands are not just books with exercises for students. They go together with extensive
teacher guides. In fact, the textbooks determine largely what mathematics is taught
and how it is taught. They can be seen as the potentially implemented curriculum
(Valverde, Bianchi,Wolfe, Schmidt, &Houang, 2002). Of course, in what waymath-
ematics education comes to life in classrooms can differ between teachers and can
also not be the same for all types of students, but in general what is in the textbooks is
also found in classrooms. Therefore, textbooks are a good source to gain knowledge
about the Dutch didactic tradition. They even give us a window to mathematics edu-
cation in the past that we cannot witness anymore, and for which no video recordings
are available.

In the chapter, a tour is made along textbooks for primary school mathematics
education from 1800 to 2010. The aim of this tour is to reveal the various approaches
towards mathematics education that were in fashion during this period of time, and in
this way to learn about how these different approaches evolved and what lessons can
be learned from the past for our currentmathematics education in primary school. The
description of the textbooks thatwere in fashion in the successive periods is structured
by distinguishing three categories of textbooks: procedural, conceptual, and dual
textbooks. Because the various views on the teaching mathematics manifest mostly
in the domains of flexible calculation, algorithmic calculation and applications, we
focus our description on these domains.

6.1.1 Procedural Textbook Series

The procedural textbook series are sometimes also referred to as ‘mechanic’ or
‘mechanistic’. The adage of these textbooks is “First do, then know”. They focus on
the mathematical content. Their intention is to line out this content exactly, that is,
to split it based on difficulty level and to unravel every part into the tiniest details.
In these textbook series, there is a lot of attention for repetition, based on the idea
that practise makes perfect, and provides skill. Little value is given to understand-
ing as the basis for practising, for example in the case of tables of multiplication.
Memorisation of mathematical facts, automatisation of operational procedures and
recognising types of problems are the first and foremost interests. There is a single-
track approach, guided by rules, and aiming to achieve an efficient standard method
to solve a particular type of problems as quickly as possible. The operations for
calculations up to ten, twenty and one hundred are performed according to a fixed
rule, starting with splitting at ten for adding up to twenty. Next, the standard recipes
for the algorithmic calculations of the four basic operations with whole numbers,
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decimal numbers and fractions are successively introduced and rehearsed. Applica-
tion is only considered at the very end of the teaching trajectory, and then only rarely.
Smart, flexible (mental) calculations and estimating are not part of the programme.

6.1.2 Conceptual Textbook Series

The conceptual textbook series differ from the procedural textbooks series on almost
all the aspects mentioned. The mathematical content is not atomised. Understanding
is highly valued in learning mathematical facts and procedures. This is one reason
that the most shortened forms of the calculation algorithms are not taught imme-
diately, but that teaching starts with transparent predecessors of these algorithms.
Applications are included from the beginning of the teaching trajectory, as the basis
for understanding.Number sense, flexible (mental) calculation, and estimation have a
central place next to algorithmic calculation.Within a framework of carefully formu-
lated goals, students are given the opportunity to design their own problems, develop
solution methods and work on their own level. And finally, the relations between the
four basic operations and between the sub-domains ratio, fractions, percentages and
measurement are firmly anchored.

Within the category of conceptual textbook series three sub-types can be dis-
tinguished. There are textbooks with a heuristic, a functional, and a realistic
orientation.

The conceptual textbook serieswith a heuristic orientation strongly emphasise that
understandingmust come first. They focus on students’ insightful, self-inquiry-based
way of dealing with numbers in a whole-class setting led by the teacher. Moreover,
these textbook series put great importance on applications being given attention from
the very start.

The conceptual textbook series with a functional orientation are characterised by
stimulating the understanding of students by, for example, involving them actively
in discussions about the adequacy of certain solution methods. Applying learned-
by-heart tricks should be avoided as much as possible. The functionality of these
methods is mainly reflected by letting the students estimate and check their answers,
and the connection that is sought to daily-life related problems.

The conceptual textbook series with a realistic orientation, called ‘realistic text-
book series’—named after the domain-specific instruction theory of Realistic Math-
ematics Education (RME)—have much in common with the heuristic and functional
textbook series, but distinguish themselves through, for example, offering more rich
problems and often choosing a thematic approach and a problem-oriented way of
teaching. The realistic textbook series also contain new components such as calcu-
lations with the aid of a calculator and spatial geometry related to the world around
us. A third difference involves the comprehensive use of contexts and models, such
as the arithmetic rack, the (empty) number line, the (percentage) bar, and all kinds
of diagrams, schemas and tables.
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6.1.3 Dual Textbook Series

Dual textbooks series form an intermediate category of textbooks series. They cannot
be considered as purely procedural textbook series nor as conceptual, but contain
elements of both. This can, for example, imply that a textbook series on the one
hand gives no attention to flexible mental calculation, and shows little interest in
including applications, but on the other hand deals with algorithmic calculation in an
insightful manner. The reverse can as well be the case. Then, conceptual elements of
flexible (mental) arithmetic, estimation and their applications go together with the
mechanistic approach of a procedural textbook series. Dual textbooks series can also
have different approaches for the lower and the higher grades.

6.1.4 Textbooks Series in Use Over Five Time Periods

When describing the most important textbook series that were in use from 1800 to
2010 we make a distinction in five time periods. For each of them we highlight the
textbook series that were characteristic for that time (see Fig. 6.1). The first period,
labelled as ‘Procedural didactics and semi-textbook use’, running from 1800 to 1875,
is a kind of pre-stage of textbook use. From 1875 to 1900 was the period in which the
use of complete textbooks started. Then, the first type of conceptual textbook series
was used, namely those with a heuristic orientation. In the next half century, from
1900 to 1950, the dual textbook series were in use. The subsequent time period, from
1950 to 1985, is both characterised by the use of procedural textbook series as well
as by the use of conceptual textbook series with a functional orientation. The time
between 1985 and 1990 is taken up by the conceptualisation of a new curriculum
for mathematics education in primary school, published in the Proeve1 (Treffers, De
Moor, & Feijs, 1989). This programme was meant to get more coherence in what
and how mathematics is taught. In the time period from 1990 to 2010, the divide in
procedural and conceptual textbook series was basically over. The large majority of
the textbook series which are now in use belong to the conceptual textbook series
and have a ‘realistic’ signature or have at least a number of RME characteristics
(Treffers, 2015, pp. 130–135; Van den Heuvel-Panhuizen & Drijvers, 2014).

1The full title is Proeve van een Nationaal Programma voor het Reken-wiskundeonderwijs op de
Basisschool.
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1800

Procedural didactics 

& 

Semi-textbook use 

Lower grades
No textbooks; 
mathematics taught 
on the blackboard

Upper grades
textbook series for 
individual use

1835: Hemkes

1850: Boeser

1875
CONCEPTUAL
Heuristic
textbook series

1875: Versluys
1878: Van Pelt

1900

DUAL
textbook series

1918: Bouman & Van Zelm

1935: Diels & Nauta  

1950
PROCEDURAL 
textbook series
& 
CONCEPTUAL
Functional 
textbook series

Procedural textbook series
1950: Naar Zelfstandig Rekenen
1970: Niveaucursus Rekenen
Functional textbook series
1949: Geef Acht!
1958: Functioneel Rekenen
1969: Nieuw Rekenen

1985-1990 Proeve: Towards a National Programme for mathematics education in primary school

1990
CONCEPTUAL
Realistic
textbook series

1981: De Wereld in Getallen
1983: Rekenen en Wiskunde
2001: Pluspunt
2001: Rekenrijk
2002: Alles Telt
2009: Wizwijs

2010 PROCEDURAL
textbook series

2009 Reken Zeker

Fig. 6.1 Overview of two centuries of textbook series for primary school mathematics in the
Netherlands
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6.2 The Period 1800–1875: Procedural Didactics
and Semi-textbook Use

6.2.1 Teaching Mathematics on the Blackboard and No
Complete Textbook Series Available

In Article 4 of the first Dutch Education Law launched in 1806, mathematics was
considered a compulsory school subject alongside reading and writing. In 1810 the
government compiled an official list of recommended mathematics textbooks series.
These textbooks were not used for whole-class instruction, but to teach students
individually.Moreover, they were onlymeant for the upper grades of primary school.
Therefore, the period 1800–1875 can be referred to as semi-textbook use, since no
complete textbook series for all grades of primary school were available.

In the lower grades mathematics was taught without textbooks. This involved
mechanistic teaching of mathematics on the blackboard. The approach was clearly
procedural. An assistant teacher wrote the problems on the blackboard and the stu-
dents then had to calculate them on their slate. Beforehand, drill-and-practise activi-
ties were done with the whole class to prepare carrying out algorithmic calculations.
The approach was purely procedural—there was no space for flexible calculations.
Once students had mastered the standard algorithms, then in the upper grades they
were given a textbook for the first time and had to work through the book individually
under their teacher’s guidance.

6.2.2 The Textbook Series by Hemkes

The so-called ‘ten cent’ textbook series by Hemkes (1846) were the most used text-
books during the period 1800–1875. In 1835 Hemkes published the textbook De
Kleine Rekenaar (The little calculator), meant for beginners. In this textbook each
of the basic operations starts with problems with bare numbers, followed by word
problems with named numbers. Then follow assignments for practising with mixed
problems for all operations that have been dealt with so far, addition, multiplication,
subtraction and division respectively. This is followed by a repetition chapter with
these problems—all in all nearly 400 problems. What is remarkable, is the large
variation in difficulty between the problems within one category. Take, for example,
the difference in difficulty level between the first two of the following problems and
also notice in the third problem the often occurring elaborated and informal style of
the word problems.

1. Count together: 3, 2, 8 and 9.

2. How much does the sum of all numbers that you can make with the numbers 5, 6 and 9
amount to?
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3. Hans could not work out how much money one would have to pay for 5 cows if one cow
cost 85 guilders. Oh, do give the fool a hand.

The other ‘ten cent’ textbooks, consecutively dealing with decimal fractions, money,
measurements and weights, the ‘rule of three’ and proper fractions, follow the same
structure. Each time the textbook begins with bare number problems, followed by
word problems with named numbers for each operation in the previously mentioned
order.

The Hemkes textbooks were rather popular. Only in the second half of the 19th
century they were gradually replaced by Boeser’s mathematics textbooks.

6.2.3 Boeser’s Mathematics Textbooks

The textbook series by Boeser (1850) address the same content topics as Hemkes’
textbooks, but Boeser’s word problems, contrary to those of Hemkes, were quite
factual and brief in their formulation. In the foreword ofBoeser’sEerste Rekenboekje,
which he published in 1850, he wrote:

Yet, according to me, some of the books for beginning reckoners are too extensive, too
tedious; others contain too few imaginable situations derived from the children’s world and
daily life, whereas most of these books (I give my own opinion here) suffer from the evil of
the mechanistic approach. Not only do these books contain a series of dry problems which
children have already done while working on the blackboard, the books also offer a number
of problems with the assignment ‘add together’, ‘subtract’, and so on, which can be done
without developing or practising the children’s ability to reason.

Here Boeser has a point; when application problems have been placed within a par-
ticular category of problems, for example in a section about multiplication problems,
the students automatically know that they can find the solution by doing a multiplica-
tion. And a further point is: why should a mathematics textbook contain bare number
problems if the students previously practised these problems through doing whole-
class calculations on the blackboard? Hence, it is no surprise that Boeser’s textbooks
particularly contain mixed application problems. An example follows now.

Amanworked daily for 12 hours; he spent 2 hours on eating and 3 hours on leisure activities.
The remaining time he spent on sleeping. Howmany weeks did he spend sleeping in a year?2

Boeser’s books with the mixed applications were particularly popular and they were
reprinted until the 20th century.

2All quotations from textbooks are translated from Dutch by the authors.
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6.3 The Period 1875–1900: Conceptual Textbook Series
of a Heuristic Orientation

6.3.1 Influence from Germany

At the end of the 19th century the conceptual approach to teachingmathematicsmade
its appearance. This was also the first time that a complete textbook series was used.
This new approach was launched with the publication in 1865 of Rijkens’ transla-
tion of a handbook of the well-known German mathematics didactician Hentschel
(Hentschel & Rijkens, 1865), who is called the ‘father of the new arithmetic in public
schools’. Partly due to this publication, a renewed interest arose in the work on early
mathematics education done by Grube, who was another important German mathe-
matics didactician, whose Leitfaden für das Rechnen (Guide for arithmetic) was pub-
lished in 1842. In the Netherlands, Grube’s publication became known through the
slightly adapted version that was published by Brugsma in 1847 (see also Brugsma,
1872).

6.3.2 Versluys

Versluys, the founding father of the Dutch didactics of mathematics, was heavily
inspired by the Germanmathematics didacticians Hentschel and Grube whenwriting
his textbook series Rekenonderwijs ten Dienste van de Lagere School which was
published in 1875 (see Versluys, 1875). He characterised his conceptual textbook
series as ‘heuristic’, whichmeans that the focus was on insightful, self-inquiry-based
learning of mathematics within a whole-class setting guided by the teacher.

Yet, in Versluys’ textbook for the first year of primary school not much can be
recognised of what is usual in today’s mathematics education. The main reason for
this is the monographic method that Versluys applied. Here, he followed Grube.
Typical for this method is the ‘operational’ way the numbers 1–20 are handled.
Every time a number is built up, split up, and ‘measured’ with preceding numbers.
This means that from the very beginning the four basic operations are involved in
the teaching of mathematics, but first through oral assignments and word problems
and not in formal symbolic notations. In the teacher guide, for each number under
ten about one hundred problems are provided for making calculations with present
or absent objects and amounts, and with unnamed numbers. For the numbers from
ten to twenty the quantity of provided problems has been reduced to less than fifty.

However, the way Versluys treats calculations up to one hundred has a lot in com-
mon with howwe do it today. Additions and subtractions are not done in a prescribed
manner, but flexibly. At the same time the multiplication (and division) tables are
memorised more or less automatically, following a heuristic approach, structured
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Fig. 6.2 Structure of teaching multiplication by Versluys (1875) (cent = cent; dubb = dime;
enen = ones; tienen = tens)

through doubling and reversing, and by means of products with five and ten. The
properties of the multiplication operation which are at stake here can be used later
for mental arithmetic. Here, too, there is again a lot of attention for applications.
With problems such as 9 × 13 and 13 × 9 the impetus is given for flexible (men-
tal) calculation, whole-number-based written calculation and insightful algorithmic
(digit-based) written calculation, plus the relationships between them. For all these,
a rectangular model serves as a visual basis.

Algorithmic multiplication is structured ingeniously. On the one hand, the prob-
lem4× 23 (“4 children each get 23 cent”)makes a connectionwith repeated addition,
and thus with the shortened algorithmic method the students learned earlier for addi-
tion. On the other hand, through 23× 4 (“23 children get each 4 cent”) students learn
the zero rule of algorithmic calculation that is applied in the case of multipliers with
multi-digit numbers (Fig. 6.2).

The digit-based algorithm of long division is prepared through a whole-number
repeated subtraction approach. Again, an elementary word problem serves as a con-
crete basis: “How many times can 4 guilders be taken from 936 guilders?” First a
chunk of 4 guilders is taken away 200 times, then from the remainder 30 times a
chunk of 4 and finally 4 times a chunk of 4 guilders; altogether this makes 234 times.

Versluys assigns as much value to flexible mental arithmetic as to algorithmic cal-
culation. For both mathematical domains, he starts with numbers up to one hundred.
What is noticeable, is the large amount of word problems and the rather small num-
ber of bare number problems—for Versluys arithmetic is in the first place applied
arithmetic. Only in the upper grades of primary school does this change: then com-
plex algorithmic calculations appear which are in Dutch called ‘vormsommen’ (form
problems). Figure 6.3 shows an example of such a problem.

Fig. 6.3 Example of a ‘vormsom’
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6.3.3 Van Pelt

Van Pelt, who published De Nieuwe Rekencursus in 1878 (Van Pelt, 1878, 1896,
1903), also makes use of the monographic method for calculations up to twenty.
However, for calculations up to hundred and thousand, his approach differs from
that of Versluys. In Van Pelt’s approach, there is no room for algorithmic calculation
in the first three years of learning. It is mental arithmetic all the way. Furthermore,
Van Pelt makes it very clear that for him the final goal is that the multiplication
tables are known by heart, and that on the way to that goal the students have to
learn to understand a variety of properties that they will be able to utilise in mental
arithmetic in future. Van Pelt (1903, p. 15–17) states the approach in his textbook
series as follows:

No sensible teacherwill ask herewhether this is the fastestway for students to learn the tables.
Hewill understand that themain goal of our teaching has to be development, development by
doing and searching on your own. Hewill quickly notice that this way of working has such an
influence on the students that later on they will choose this approach themselves, especially
in mental arithmetic. (…). The author of the arithmetic course expresses his annoyance that
at this time so many still learn their tables by memory work: yet, every teacher knows that
arithmetic education should be purely heuristic.

And a bit further on, when it is about calculation up to one thousand, next to the smart
calculations, Van Pelt places the stylised, whole-number-based written calculation,
which is the prelude to insightful algorithmic written arithmetic in the fourth year
of primary school. If there is ample attention in mental arithmetic for insightful
solutions for problems such as 40 × 55—via 40 ells3 at 55 cents—then learning the
calculation algorithm for 43 × 55 should not be a problem. According to Van Pelt,
you first calculate 3× 55 and 40× 55 separately and then combine the results from
both.

As far as practical applications are concerned, there is no essential difference
between Versluys and Van Pelt. They both give word problems a central place in
their textbook series, and utilise them from the beginning as a concrete starting point
for learning formal calculation procedures.

6.3.4 The Adage of the Conceptual Mathematics Textbook
Series with a Heuristic Orientation

The didactic adage of the conceptual mathematics textbook series with a heuristic
orientation is “First know, then do, first think, then do”—exactly the reverse of the
procedural motto!

However, this adage can be easily misunderstood. Because knowing and think-
ing do not only refer to understanding of the calculation rules and procedures, but

3An ‘ell’ is an old length measure. In the Netherlands, an ell was 69.4 cm.
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also to comprehending their applicability. And according to the heuristic point of
view, this applicability can be guaranteed only when applications are part of the
teaching trajectories from the very start. This even goes so far that initially the cal-
culation procedures are adapted for the sake of applicability! So, it may happen
that students learn two versions of the division algorithm: whole-number-based divi-
sion with repeated subtraction involving quotative division (“How many weeks are
there in 364 days?”) and digit-based long division for problems that imply partitive
division (“Fairly divide the amount of 364 guilders among 7 people. How much
does each of them receive?”). Only after some time, these two forms of division are
brought together and combined into the common form of long division. Also, the
gradual, whole-number-based start of the algorithmic calculations for the other basic
operations is inspired partly by the criterion of applicability.

From the above it can be concluded that ‘conceptual’ is considered as ‘first know-
ing why’ and only then ‘knowing how’ is not correct. In fact, the why and the how
are intertwined here. The teaching of the multiplication tables, as Versluys and Van
Pelt advocate, is an eloquent example of this.

6.4 The Period 1900–1950: Dual Textbook Series

In the first two decades after 1900, new textbook series were published, which can be
called ‘dual’, since they combine characteristics of both procedural and conceptual
textbook series. They are characterised by the fact that they:

– Abandon themonographic treatment of the numbers up to twenty, and the teaching
of multiplication and division in the first year of primary school

– Restore the prominent place of counting in the initial phase of education
– Do no longer give priority to word problems, but start with bare number problems
– Assign a larger relevance to algorithmic calculations than to mental arithmetic
– Put more emphasis on skills than on insightful calculation.

The textbook series by Bouman and Van Zelm (1918) was one of these new
dual textbook series. This textbook series gained greatly in popularity from around
1920. Considered from the viewpoint of the very beginning of learning arithmetic,
Bouman and Van Zelm’s (1918) textbook has a one-sided focus on counting—one-
sided because this textbook series rejects number images and all kinds of visual
means that elicit grouping procedures. Numbers should remain unnamed; they are
mathematical conceptions, and as such cannot be related to objects and figures.

In the teacher guide it says: “Mathematics education should put the emphasis on
calculation with unnamed numbers.” Yet, the authors permit that the students can
start by drawing dots and circles as long as they have no specific meaning.

Aside from elementary mental calculation, the textbook series of Bouman and
Van Zelm does not give attention to flexible mental calculation outside the area
of numbers up to one hundred. Only in 1934 do the authors revise their deviating
approach regarding flexible mental calculation.



88 A. Treffers et al.

Algorithmic calculation is taught in an insightful manner through whole-number-
based calculations, but the authors remain true to their beliefs: the use of concrete
objects and named numbers such as cents, ten cents and guilders to provide insight
into the calculation procedures within the decimal system, is discouraged strongly.
For example, considering the ten as ‘equal’ to ten cents does not make the under-
standing and applicability of the concept simpler, according to Bouman and Van
Zelm.

Furthermore, it is curious how little interest they have in the issue of appli-
cability. Take for example the topic of division. In the Booklets 5 and 6
(meant for Grade 3), there are 2500 bare number problems and only fifty appli-
cation problems for quotative and partitive division. Applications only appear after
Booklet 9 (meant for Grade 5), so around the point that students who will not go to
secondary education are about to stop.

Because of neglecting flexible (mental) calculation and disregarding the inclusion
of application problems in algorithmic calculation in the lower and middle primary
school grades, the original version of the textbook series by Bouman and Van Zelm
is closer to procedural textbooks than to conceptual textbooks. The great attention
that this textbook series devotes to complex thinking problems does not affect this
conclusion, since learning to solve these problems is mostly an issue of training to
recognise the type of problems for which the solution methods have been practised.
If you have not been trained to solve these problems, it will be impossible or at best
very hard to solve them correctly—consider, for example, the following percentage
problem from Bouman and Van Zelm.

A pays ƒ160,38 for a bale of coffee. If he enjoyed 1% for cash payment and had 10% tare
and had to pay 45 cents per half kilogram, what was the gross weight of the bale?

In 1935, Diels and Nauta published their textbook series Fundamenteel Rekenen (see
Diels&Nauta, 1939, 1944), which can also be characterised as a dual textbook series.
Diels and Nauta were strongly against this type of thinking problems. Nevertheless,
despite their critique and resistance from primary school teachers and thinking psy-
chologists, they had to include them in their textbook series, because these problems
remained part of the secondary school entry examinations. In addition, the textbook
series by Diels and Nauta differs not only at the end, but also at the start of math-
ematics education from (the first version of) the textbook series by Bouman and
Van Zelm. In arithmetic up to twenty, in Niels and Nauta’s textbook, together with
counting, the use of number images is involved. In addition, these authors do not
abandon problems with named numbers, although these problems only appear little
by little at the end of the teaching trajectory for arithmetic up to twenty.

From the second school year on, Diels and Nauta reserve ample time in each
lesson for mental calculation with word problems and oral calculation exercises with
bare numbers. Some examples of the word problems from Booklet 9 (meant for
Grade 5) of Fundamenteel Rekenen published in 1944.
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(1) An airplane is at a height of 3600 m and suddenly descends 735 m. How many m is it
still above the earth?

(2) A troop of soldiers covers 23 km in 4 h. Now they still need to cover 11½ km. How
long does that journey take, if they rest for two hours along the way?

(3) Michiel de Ruyter was born in 1607 and died 1676. How old did he become? How
many years ago did he die?

(4) A gentleman loses a wallet with ƒ4000. He will give 2½% as a reward to the finder.
How much reward will the finder receive?

The oral calculation exercises (according to the teacher guide, these exercises
mean that “the teacher reads out the problem, the students write down the answer”)
usually consist of bare number problems (Fig. 6.4).

With this approach, Diels and Nauta firmly followed the 1936 school inspection
guideline that states: “Mental arithmetic should take up a prominent position; when
it is done with small numbers, it does not merely have practical value, but also fosters
understanding.”

The textbook series Fundamenteel Rekenenl is the first one that has put estima-
tion on the educational programme. This is motivated as follows: “It was attempted
to further discourage the purely mechanical work by repeatedly having the result
estimated before calculating it.”

Considered so far, this textbook series by Diels and Nauta is a purely conceptual
textbook series. However, this changes whenwe consider algorithmic calculation. As
can already be seen from the quotation on estimation, the authors are critical, not to
say negative, about algorithmic calculation. In this context, they speak about training
and mechanisation which lead to thoughtlessness and would obscure understanding
of the number system. The amount of algorithmic problems is therefore considerably
smaller than with Bouman and Van Zelm—for some parts it is only a quarter of it.
Another noteworthy point is that in the Diels and Nauta textbook series the algo-
rithmic procedures are not taught in a comprehensive way, not even for relatively
small numbers such as 364 ÷ 7, where whole-number-based division by means of
repeated subtraction would be an obvious approach. Also, the applications of algo-
rithmic calculation with large numbers including decimal numbers are only treated
in the higher grades. In this respect, this textbook series shows all in all a typical
procedural approach. In other words, along with the innovative, conceptual elements
of flexible (mental) arithmetic, estimation and their application, the textbook series
of Diels and Nauta does also contain elements that are in line with the procedural
textbook series. Therefore, this often-used textbook series, just as the textbook series

Which problems have the wrong answer?

Fig. 6.4 Oral calculation exercise from Diels and Nauta (1944)
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of Bouman and Van Zelm, has to be characterised as dual, even if the Diels and Nauta
textbook series is closer to the conceptual approach than the latter.

It was only in the course of the 1950s that these two textbook series lost their
leading position in the market.

6.5 The Period 1950–1985: Procedural Textbook Series
and Conceptual Textbook Series with a Functional
Orientation

Considered quantitatively, the procedural textbook series dominate in the period from
1950 to 1985. Five of such textbook series managed to acquire a substantial market
share, withNaar Zelfstandig Rekenen (Zandvoort, Venekamp&Kuipers, 1955/1970)
formany years the largest.With respect to content, this textbook series fullymeets the
general characterisation of the procedural approach. Nevertheless, what makes the
series special is the practical organisation of independent, individual work in a looser
classroom setting, which is made possible by the particular setup of the booklets.
Alongside every page with problems there is a page with suggestions and worked
examples that can, if necessary, be further explained by the teacher. The learning
content is systematically divided into small units which have been organised on the
basis of increasing complexity. Based on this information about the textbook series, it
can only be concluded that this procedural textbook series is proficiently assembled:
the structure of the learning content is well thought out, and the instructions for the
students are adequate. Partly because of this, the textbook series is fairly easy to
use in everyday teaching. The other procedural textbook series with a large market
share, Niveaucursus Rekenen (Vossen et al., 1970), is also based on a more loosely
organised classroom setting and the approach and content of this textbook series
largely corresponds with Naar Zelfstandig Rekenen.

Halfway through the 20th century, parallel to the procedural textbook series, a
new type of conceptual textbook series emerged, which can be called ‘functional’.
The ideas about mathematics education laid down in these textbook series were as
innovative as the approaches reflected in the conceptual textbook series with a heuris-
tic orientation that were in use in the 1870s. For the new conceptual textbook series
with a functional orientation, new educational avenues were followed inspired by
the German Psychology of Thought and its didactical application by the Amsterdam
school of Kohnstamm (1952).

The best known functional textbook series is Functioneel Rekenen written by
Reijnders and Snijders (1958). However, this textbook series was not the first of its
type. The honour for being the first to develop a new conceptual textbook series
goes to Rombouts and his textbook series Geef acht! (Rombouts, 1948). This text-
book series is the counterpoint to the pure recipe-based procedural textbooks series.
Finally, the third functional textbook series was Nieuw Rekenen (Bruinsma, 1969),
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that advertised itself as a functional textbook series and was, based on its market
share, the most successful one of these three series.

The textbook series Functioneel Rekenen (Reijnders & Snijders, 1958) empha-
sises:

– The importance of a whole-class discussion about the various solution methods
for bare number problems and context problems

– Own productions of problems in various forms, for example, making up problems
that go with a given answer, or finding a suitable word problem that fits to a given
bare number problem, or formulating a question for a problem without a question

– The power of visual models such as the number line, tables and bars, in solving
problems

– A lot of attention for flexible mental calculation
– The value of estimation for roughly determining or checking the outcome of a
calculation, but especially as a didactical tool for teaching precise calculation.

The latter point is an entirely new idea that is explained further using the example
of 52 + 29. First the outcome is given a lower (70) and an upper (90) limit, and
then this outcome is made more precise in various ways using questions such as
“How much more than 70?” and “How much less than 90?” The explanation pro-
vided inFunctioneel Rekenen finishes with: “These kinds of solutionmethods should
emerge constantly in whole-class or group discussions. The numbers are handled in
an entirely different way than in algorithmic calculation.” About algorithmic cal-
culation the following is said: “Throughout the whole textbook series the goal has
been to avoid mechanical work with numbers—that is, applying tricks that have been
learned by heart—as much as possible.”

Although the title of the textbook series emphasises the functional aspect, this
principle is not applied to the teaching of algorithmic multiplication. As with Diels
andNauta the standard procedures forwhole numbers, decimal numbers and fractions
are taught in a purely recipe approach. Yet, for the upper grades of primary school
the textbook series does contain applications of various forms: problems without
questions, free productions, closed problems in which the students have to find the
right operations, and also elementary mental calculation and estimation problems.

The textbook series Nieuw Rekenen assigns an important role to mental calcu-
lation. This mainly involves calculations done while using your head, rather than
done in the head. The general introduction of the textbook series Nieuw Rekenen
(Bruinsma, 1969, p. 12) states this as follows:

Mental calculation is always arithmetic that is functional and based on understanding. What
it is not: algorithmic calculation done in the head or applying tricks. Mental calculation
always demands understanding of the structure of the numbers. Mental calculation certainly
does not imply that paper may never be used. It is often advisable to give especially those
children with a less good memory the opportunity to write down intermediate answers; this
puts the child at ease and can strengthen confidence. Real life demands the ability to perform
simplemental calculations quickly; the childmust be able to quickly understand relationships
and know which calculations to perform; mental calculation increases understanding of the
number system and encourages discovering the many possibilities that lead to the same
answer.
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In short, flexible (mental) calculations are not just a goal in themselves, but also
function as a didactical tool to foster number sense, insightful arithmetic and appli-
cability. Five examples from Booklet 4b for Grade 4 on multiplication show how this
basic concept is made concrete.

1. Calculate:
5 × 98 = 5 × 90 + 5 × 8 =
but also 5 × 100 – 5 × 2 =
and half of 10 × 98 =
Calculate in different ways.
7 × 98 4 × 98 12 × 25

2. Calculate in the simplest way.
6 × 94 8 × 97 28 × 29

3. Make your own problems.
There is a fence around a meadow.
The meadow is long 120 m, wide 80 m.

4. Make 5 multiplications.
The outcome is always 450.

5. Estimate first!
9 × f 3.75 = 85 × f 0.97 =

Problem 1 puts the students on the trail of smart calculation that can be applied
in Problem 2. In Problem 3, algorithmic calculation comes into view with 28 × 29.

Moreover, the textbook seriesNieuw Rekenenmakes an insightful transition from
calculation by splitting and whole-number-based calculation to algorithmic calcula-
tion. For multiplication, this transition could take place in a few lessons and could
go as follows (Fig. 6.5).

In (a) and (b) the whole-number-based calculation is shown. In (c) the transition
to calculating with digits is made. Earlier, this approach is also followed for addition

Fig. 6.5 Structure of multiplication in Nieuw Rekenen
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Fig. 6.6 Structure of long division in Nieuw Rekenen

and subtraction, after first showing the position values of the ones, tens and hundreds
using coins (cents, dimes, and guilders).

Long division (Fig. 6.6) is introduced using a problem such as 72 ÷ 3 with the
question: “Into how many groups of 3 can I divide 72?”

The students can start with (a) for a few problems, but soon they will have to
switch to (b). Using the shorter notation, from ‘20’ to ‘2.’ to ‘2’ takes place in one
lesson. The transition from (b) to (c) is made in more difficult problems.

This phased approach can also be found in the conceptual textbook series with
a heuristic orientation by Versluys and Van Pelt and in the dual textbook series by
Bouman and Van Zelm. The main difference with these previous textbook series is
that in Nieuw Rekenen the transition from (a) via (b) to (c) happens in a few lessons
and the description in the textbook is apparently mostly aimed at the teacher who
can use this to give an insightful explanation of the shortened standard procedure.
In Nieuw Rekenen, fractions, ratios and percentages are also taught in an insightful
manner in the sense that the teacher, following the textbook series, can explain the
concepts and operations as clearly as possible on the basis of models and schemes.

Moreover,NieuwRekenen containsmany andvaried application problems, that are
sometimes placed together in a thematic series, for example, a series about shopping,
sales receipts, foreign money, train journeys and distances in Europa. The closed,
half-open and open assignments match well with what is being taught at the time;
they are applications of what students have previously learned in a purely numerical
way.

In this respect, this textbook series distinguishes itself from the textbook series
Geef Acht! In the teacher guide Rombouts (1959) says:

The problem, the genuine mathematics problem, is both the start and the end. It is used to
give context to the calculations, and it is returned to over and over again, since everything
has to have a purpose for the students as well. Not start with ‘mathematics’ and later on
‘applied mathematics’, but together, connected.

This textbook series is further characterised by the emphasis on flexible mental
calculation, own productions and a reduction of the learning content. The latter was,
with respect to the thinking problems and problems about the metric system, was
only made possible when at the beginning of the 1970s, the comprehensive entry
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examination for secondary education was replaced by the less broad Cito End of
Primary School Test.4

6.6 The Period 1985–1990: Towards a National Programme
for Primary School Mathematics

The time period between 1985 and 1990 is characterised by the many efforts that
have been made to get a new programme for mathematics education in primary
school. The start of working on this programme goes back to the beginning of the
1970s when the large-scale Wiskobas5 project was launched. From 1971 to 1981 the
Wiskobas team developed, together with the educational field and in school practice,
a large collection of rich problems and themes for various topics within arithmetic,
measurement and geometry, and they developed initiatives for new textbooks. In
this period, also the foundation was laid for what later became known as Realistic
Mathematics Education (RME).

TheWiskobas publications functioned as a source of inspiration for the new, real-
istic textbook series, that is, RME-oriented textbook series, that hesitantly appeared
on the educational market around 1980—hesitantly, because their content was not a
seamless match for the then prevailing mathematics teaching practice and the Cito
End of Primary School Test. The effect of all this was a (too) large diversity in text-
book series. The need for a (new) national mathematics curriculum with explicitly
stated end goals made itself felt. On the initiative of the Nederlandse Vereniging tot
Ontwikkeling van het Rekenwiskundeonderwijs (NVORWO; Netherlands associa-
tion for the development of mathematics education), hundreds of people involved in
the field of education were consulted about the future of mathematics education in
primary education. In 1987 this resulted in the Proeve (Treffers et al., 1989), the first
design for a national programme for mathematics education in primary school. A
few years later, the mathematics end goals for primary school described in this pub-
lication were officially given approval by the government (OCW, 1993) and served
as beacons for textbook authors and test developers.

The concrete learning goals in the Proeve involve the domains of basic skills,
algorithmic calculation, ratio, fractions, percentage, andmeasurement and geometry.
These core goals can be typified as follows.

– For the domain of basic skills much emphasis is put on the understanding of the
decimal place value system, mental calculation, estimation, applications, as well
as appropriate use of calculators.

– Algorithmic calculation provides room to learn variants of the conventional
procedures, such as the ones earlier described in this chapter for long division.

4The Cito End of Primary School Test is developed by Cito, the Netherlands national institute for
educational measurement.
5Wiskunde op de Basisschool (Mathematics in Primary School).
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– Because of its broad applicability the domain of ratio is interpreted much more
widely than the formal ratios of traditional arithmetic. Practical calculations
with percentages are also given a lot of attention—with the focus firmly on
understanding the concept of percentage.

– Fractions and decimal numbers, and the relations between them, are givenmeaning
in various ways. The students should be able to compare, order, add, subtract,
multiply and divide fractions and decimal numbers in simple application situations.
Directly leading students to mastery of the mathematical rules for these four basic
operations is rejected.

– More attention than in the past is given tomeasurement, calculations with common
measures and representing measurement data in schemes and graphs. However,
there is less attention for practicing the metric system.

– Teaching geometry starts with focussing more on observing (peep dioramas, pho-
tos, localising, light and shadow, building block constructions) than on making
calculations. Students come across a great diversity of aspects of mathematics
from starting with observable reality, such as visualising, using geometrical mod-
els, spatial orientation and reasoning, reflecting on one’s own actions, applying
geometrical knowledge and insights to practical and puzzle-like problems, and all
this in relation to topics from the field of arithmetic and measurement.

The Proeve does not limit itself to describing the end goals of mathematics edu-
cation, but also makes statements about the didactics. Because it is a good habit
within RME to use examples from teaching practice or from a textbook series for
explaining particular approaches, we also will do this now. To illustrate what this
didactics means, we have chosen a problemwhere different core aspects of ‘numbers
and operations’ can be seen. RME-oriented mathematics education sometimes uses
newspaper clipping to ask mathematical questions. In this case this is done as well.

Hard work in the bulb fields

Every year in spring in the Netherlands there is a lot of work to be done in the bulb-growing
industry. This is the fourth year that Johan has been doing this work; he has worked both in
the fields and in greenhouses. Now he works in the transport department of a company in
the auction halls. “I usually load the trucks, that is heavy work. I usually work 220 hours a
week. That’s good, because you earn money that way”, according to Johan.

How would students in Grade 3 and 4 react to this newspaper clipping? It depends
on one’s expertise and sensitivity regarding the thinking of students whether one can
judge students’ solutions in advance. But even if one has the experience, childrenwill
still come up with surprises. To begin with, there are students who do not (purely)
calculate. Here are some examples:

– No, that is impossible because people work 36 or 40 h a week and this is way too
much.

– Yes, it is possible because it’s very heavy work and that often takes long to do.
– No, because my mother already works 180 h a week. If he worked harder, he’d be
working the whole day, that’s a bit much.
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Fig. 6.7 RME structure of algorithmic multiplication

– Yes, because you can load trucks and grow bulb fields at the same time.
– It’s not possible, because a week only has 168 h.

Moreover, the calculations that lead to the last conclusion are very diverse:s

– repeated addition: 24, 48, 72 … 168
– repeated doubling: 24, 48, 96, 192; 192 – 24 = 168
– multiplication by splitting: 7 × 24 = 140 + 28 = 168
– algorithmic multiplication: 7 × 24 written ‘underneath each other’
– smart multiplication: 7 × 24 = 7 × 25 – 7 = 175 – 7 = 168
– idem, but wrong: 7 × 24 = 7 × 25 – 1 = 175 – 1 = 174 (!)
– estimation: 10 full working days is 240 h, so 220 h would be well over 9 days and
a week only has 7 days.

The newspaper clipping about Johan is an interesting problem, because it is located
on the crossroads of different content strands. Calculation by splitting, smart calcu-
lations, algorithms and estimation can all be included in it. It is clear that the students
can learn much from each other as a result of discussing differences in reasoning and
calculations. The initial focus will be on the various calculations of 7 × 24, start-
ing with the fairly laborious approach of repeated addition. Next, the approaches of
multiplication by splitting and algorithmic multiplication provide an opportunity to
show once again that the algorithmic approach to multiplication is in fact a shortened
procedure of the splitting approach (see Fig. 6.7).

The smart calculating of 7× 24 via 7× 25 requires further explanation. We know
that 7 × 25 − 1 = 174 results in an incorrect answer. How can we make the right
approach insightful?

The teacher has a model at hand to visualise the correct solution method: a stack
of 7 boxes (days), filled with 25 units (hours), from which one in each box, so a total
of 7, has to be removed: 175 − 7 = 168. How will the students in fact try to explain
this calculation to each other?

Furthermore, extensive attention can be given to the magnificent ‘suppose that’
reasoning. You can start from 220 h per week and show that you end up with an
impossible number of days per week, that is, 220 − 24 or in other words well over
9 days. Another possibility when faced with that kind of reasoning is to divide 220
by 7, ending up with a day having over 31 h. These last-mentioned argumentations
will automatically lead to estimation. At the end of the lesson the question arises:
“Is Johan that dumb, or was it simply a slip of the tongue?”
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After the students have discussed the problem in groups of two or three for a few
moments, they will collectively conclude that Johan probably made a mistake and
meant 220 h a month. This would mean that he works about 55 h per week, that is,
11 h per day in a five-day working week, or 9 h per day in a six-day working week,
and that is working hard.

In the procedural approach to arithmetic, which is the dominant approach within
traditional mathematics education, the problem 7 × 24 appears in three forms:

– As a multiplication problem in horizontal notation; meaning the problem has to
be calculated as 7 × 24 = 140 + 28 = 168

– As a multiplication problem in vertical notation; meaning the student has to use
algorithmic calculation

– As a dressed-up version with the question “Howmany hours are there in a week?”
and a free choice of how to calculate.

In this procedural approach, no attention at all is given to smart calculation of
7 × 24 via 7 × 25 – 7.

The lesson about the newspaper clipping showswhere a conceptual approachwith
a realistic orientation distinguishes itself from a procedural approach. Moreover, this
lesson also makes it clear that the lesson also differs from a conceptual approach
with a functional orientation where, in general, such rich problems are not used.

6.7 The Period 1990–2010: Realistic Textbook Series

6.7.1 An Abundance of Textbook Series

The revision of the mathematical content and the end goals, along with the didactic
repositioning as described in the Proeve, did not fail to have an influence on textbook
series. Although the realistic textbook series resemble the functional ones, there
are differences as well. What both conceptual textbook series have in common is
that they in addition to algorithmic calculation with not too large numbers, give
attention to insight into numbers, flexible (mental) calculation and estimation, and
that they work only with often used fractions and metric measures. New topics in the
realistic textbook series involve applied arithmetic using a calculator and geometrical
knowledge of the world. The didactic approach of the new, realistic textbook series
is broadly along the lines of the functional approach—broadly, since the functional
approach falls short for the second half of primary school. Here, there is a difference
with the realistic textbook series, in which in fact the entire mathematics curriculum
is modernised. Another difference can be found in the more problem–oriented and
(often) thematic character of the realistic approach. Yet another difference is the
extensive use of contexts andmodels, such as the arithmetic rack, the (empty) number
line, the (percentage) bar and all kinds of diagrams, schemes and tables.
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The two most commonly used realistic textbook series after 1990 are De Wereld
in Getallen (Van de Molengraaf et al., 1981; Huitema et al., 1991, 2001, 2010) and
Pluspunt (Groen et al., 2001; Van Beusekom et al., 2010). Since 2000, the total
market share of these two textbook series is 70%. Other realistic textbook series
with a substantial distribution rate are Rekenrijk (Bokhove et al., 2001, 2010), Alles
Telt (Boerema et al., 2002) and to a lesser degree Wis en Reken (Buijs et al., 1999;
Bergmans et al., 2001), which is the successor of one of the first realistic textbook
series Rekenen en Wiskunde (Gravemeijer et al., 1983). All these realistic textbooks
series are based on the principles of RME, which in general means that students give
productive input in an interactive, (semi-)whole-class setting.

In the case of Pluspunt students even have so much input that in some parts of this
textbook series the leading role of the teacher is marginalised. Pluspunt sets three
of the five lessons each week for having students to work independently. Partly for
this reason, this textbook series is referred to as semi-instructive, as opposed to the
instructive De Wereld in Getallen. This latter textbook series not only organises four
out of the five weekly lessons in a whole-class setting, but also has an approach in
which more teacher guidance is provided. The difference between these two realistic
textbook series is specifically reflected in the topic of algorithmic calculation (for
wich De Wereld in Getallen offers a better structure) and the topic of percentage
(for wich De Wereld in Getallen offers more starting points for teacher guidance).
Both its organisation with offering students opportunities to work on their own and
its thematic approach make Pluspunt an appealing textbook series that manages to
acquire a 45% market share in the period 2000–2010, against 25% for De Wereld in
Getallen. This choice was clearly not inspired by student results, as the first three
national evaluations of the progress in educational achievement by Cito, the PPON6

studies (Wijnstra, 1988; Bokhove, Van der Schoot, & Eggen, 1996; Janssen, Van der
Schoot, Hemker, & Verhelst, 1999) that were carried out from 1987 to 1997, were
in favour of De Wereld in Getallen.

6.7.2 The Results from the Cito PPON Studies

If one compares in the first three PPON studies (Wijnstra, 1988; Bokhove et al., 1996;
Janssen et al., 1999) the mathematics achievements Cito found for the various text-
book series in use, it is clear that the conceptual textbook series, both the functional
and realistic ones, perform much better than the procedural textbook series.

In the third study, itwas found (see Janssen et al., 1999) that on the 24mathematical
sub-domains that have been investigated, both Nieuw Rekenen and Pluspunt score
on average more than 5% points higher than the procedural textbook series Naar
Zelfstandig Rekenen and Niveaucursus Rekenen. The textbook series De Wereld in
Getallen finishes on average 10%points higher than these procedural textbook series.
For the basic operations with numbers, for estimating, for applied arithmetic with

6Periodieke Peiling van het Onderwijsniveau (Periodic Assessment of the Education Level).
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the use of a calculator, and for calculations with percentages this difference even
increases to around 20% points!

The findings of this Cito study into the effects of various types of textbook series
is of lasting relevance. Students perform better when conceptual textbook series are
used than when procedural ones are used.

With respect to the sub-domain of operations (mostly algorithmic calculations),
which is the main focus of the procedural textbook series, the first three PPON
studies show that the differences between conceptual and procedural textbook series
are only marginal. Nevertheless, from the results of the 1997 PPON study (Janssen
et al., 1999) it is clear that the scores in this mathematical sub-domain are decreasing
in comparison to the first study in 1987—a trend that continues in the fourth study
carried out in 2004 (Janssen, Van der Schoot & Hemker, 2005), but stops in 2011
(Scheltens, Hemker, & Vermeulen, 2013). Conversely, improved performances are
found on other topics, that is, insight into numbers, mental calculation (addition and
subtraction), estimation, applied arithmetic with the use of a calculator, calculations
with percentages and relations in the contexts of graphs. The performances on all
these topics increase on average 15%points—about the same increase as the decrease
for algorithmic calculations.

Taken together, these are spectacular research outcomes!

6.8 The Future Landscape of Textbook Series
in the Netherlands

In 2015, themarket shares of the largest textbook series had undergone a radical shift.
That ofDeWereld in Getallen has increased by 25%points to 50%,making the oldest
realistic textbook series by Huitema and his collaborators one of the most successful
and influential textbook series in the history of Dutch mathematics education. The
most recent edition (Huitema et al., 2010) has been revised for both organisational
and didactical structure as content. Students receive a week task for independent
working which they can do in the second part of each lesson, after the whole-class
instruction. These tasks are available at three difficulty levels, minimum, basic and
advantaged, which makes it possible that the students can work on a level that is
in tune with their ability. Further revisions in the textbook series are that some of
the teaching sequences for measurement have been adapted; less time is spent on
digit-based algorithmic calculation; and addition, subtraction and multiplication are
more geared towards whole-number-based written calculation.

The market share of Pluspunt has fallen by 25% points to 20%. Compared to
the 2001 edition, more time is spent on algorithmic calculation, much more than in
De Wereld in Getallen. The organisational structure of the semi-whole-class system
with three lessons a week for students to work independently and two lessons for
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whole-class instruction has not changed. New is that, as in De Wereld in Getallen,
for differentiation three difficulty levels are distinguished.

Also, most of the other textbook series published a revised version, but there were
only a few changes in their already not large market share. Alles Telt became a bit
larger and the market share of Rekenrijk has decreased. ForWis en Rekenen no new,
revised version was published. The new textbook series Wizwijs (Van Groenestijn
et al., 2009) did not acquire a substantial market share. The same is true for the
textbook series Reken Zeker (Terpstra & De Vries, 2009), explicitly published to
implement (again) a procedural approach, which has not obtained a market share of
any significance.

Taking into account that replacing a textbook series in a school takes about ten
years, the current situation means that for the time being, realistic textbook series
are used most frequently. So, we may conclude that two centuries of working on
mathematics education have been decided in favour of the conceptual approach.
This choice for a conceptual approach rather than a procedural one, is exactly what
Freudenthal argued for around forty years ago (Freudenthal & Oort, 1977, p. 337).

When a child finishes primary school, it has processed between ten and twenty thousand
arithmetic problems – the degree to which it succeeded with them will determine its further
education and its road in life, following a type of lower vocational education or […] gen-
eral secondary education. But foremost this fact of learning to calculate (and the achieved
or not achieved success in this learning) will determine the mathematical (or rather anti-
mathematical) attitude of the student – and, what is even worse – of the teacher who has
to teach mathematics […]. [This learning to calculate reflects]7 a view of a human being
as an efficiently to be programmed computer, while the performance typical of a computer
will never be approached. The education that we develop has been determined by another
image of a human being, and by another view of mathematics – not as subject matter, but as
a human activity.

I have previously given this the triple characterisation of

– Linked to reality

– Near to the children

– And socially relevant.

And I will now sum up these characteristics in one that encompasses all: human worthy,
the human being as a learner, as a teacher, as a counsellor and as a creator of education.
(translated from Dutch by the authors)

These words that were spoken by Freudenthal on accepting an honorary doctorate at
the University of Amsterdam, where he stated his ‘realistic’ vision of mathematics
education against the sharply contrasting background of procedural mathematics that
dominated education at the time, have lost none of their relevance today.

7Added by the authors.
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Chapter 7
Sixteenth Century Reckoners Versus
Twenty-First Century Problem Solvers

Marjolein Kool

Abstract In this chapter, the focus is on arithmetic which for the Netherlands as a
trading nation is a crucial part of the mathematics curriculum. The chapter goes back
to the roots of arithmetic education in the sixteenth century and compares it with the
current approach to teaching arithmetic. In the sixteenth century, in the Netherlands,
the traditional arithmetic method using coins on a counting board was replaced
by written arithmetic with Hindu–Arabic numbers. Many manuscripts and books
written in the vernacular teach this newmethod to future merchants, moneychangers,
bankers, bookkeepers, etcetera. These students wanted to learn recipes to solve the
arithmetical problems of their future profession. The books offer standard algorithms
and many practical exercises. Much attention was paid to memorising rules and
recipes, tables of multiplication and other number relations. It seems likely that the
sixteenth century craftsmen became skilful reckoners within their profession and
that was sufficient. They did not need mathematical insight to solve new problems.
Five centuries later we want to teach our students mathematical skills to survive
in a computerised and globalised society. They also need knowledge about number
relations and arithmetical rules, but they have to learn to apply this knowledgeflexibly
and meaningfully to solve new problems, to mathematise situations, and to evaluate,
interpret and check output of computers and calculators. The twenty-first century
needs problem solvers, but to acquire the skills of a good problem solver a firm
knowledge base—comparable with that of the sixteenth century reckoner—is still
necessary.

7.1 Introduction

Over many centuries teaching arithmetic has played an important part in Dutch
education. Interest in this subject started to grow in the sixteenth century when the
Netherlands began to develop into an important trade nation and arithmetic finally got
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its ownDutch name: ‘Rekenen’. At that time the aims, content, organisation, teachers
and students differed a lot fromwhat is going on in Dutch arithmetic education of the
twenty-first century. This chapter makes a comparison between now and then. The
differences are large and plentiful, but there are also some remarkable similarities
that we can perhaps learn from.

7.2 Arithmetic in the Sixteenth Century

7.2.1 Merchants, the New Rich of the Sixteenth Century

An early medieval Dutch merchant’s life was not very complicated. He wandered
around, visiting towns and villages, trying to barter his goods. He was not schooled
in bookkeeping and commercial arithmetic, but that was not a problem. Over time, in
the fifteenth and sixteenth century, when the Netherlands grew more prosperous and
more goodswere produced,merchantswere no longer simplewandering adventurers.
They stayed in their offices and sent out their traveling salesmen. Business journeys
became longer, merchants travelled to different countries, they had to pay salaries,
customs rights, costs of transport, assurances of goods, etcetera. They needed to
change money in many different ways, because each city had its own money system.
They visited exchange bankswheremoneychangers took care of their affairs. Bankers
and bookkeepers were needed.Manymerchants earned a lot of money and they spent
it on building houses and filling these with luxury goods; so, they needed carpenters,
bricklayers, gold and silversmiths and other craftsmen. As trading methods grew
more complex, amore advanced arithmeticalmethodwas needed, andwritten records
of all commercial transactions and calculations (Swetz, 1989).

7.2.2 Traditional Arithmetic on the Counting Board

In the Netherlands of the early Middle Ages, arithmetic was traditionally done on a
counting board with horizontal lines. Each line has a certain value and by placing
coins on or between the lines people could express numbers and do calculations. This
counting board is a variation of the ancient Greek and Roman abacus with vertical
lines and counters of ivory, bones or glass (Mazur, 2014).

Traveling merchants did not always drag along their counting board. Instead, they
left it at home and drew chalk lines on a table to do their calculations. Somemerchants
even omitted the lines. Figure 7.1a shows a picture from the French arithmetic book
Le Livre de Chiffres et de Getz (Anonymous, 1501). Three merchants are calculating
with coins without using lines. In this method (Fig. 7.1b), a decimal system is created
by placing coins on a vertical line. These are the so-called ‘layers’. The first layer
indicates the ones, the second layer indicates the tens, the next one the hundreds,
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Fig. 7.1 a In the French arithmetic book Le Livre de Chiffres et de Getz (Anonymous, 1501; picture
retrieved from Menninger, 1969, p. 367) the method of calculating with coins without using lines
is explained. b Calculating 3 × 1000 + 500 + 2×100 + 50 + 1×10 + 5+2 × 1 = 3767 by using
coins (this picture is from a book of Van Varenbraken, 1532; Ghent, University Library, ms. 2141.
fol. 187r.; picture retrieved from Kool, 1988, p. 170)

etcetera. The value of the fields between the layers increases from 5 to 50, 500,
etcetera. The number 3767 is expressed in coins. After you have learned to represent
numbers with coins the next step is doing calculations. It is quite easy to add and
subtract because you only have to add or remove coins, then rearrange the coins and
read the result. Doing multiplication and division is a little bit more complicated,
but it is doable. So, this traditional way of doing arithmetic sufficed for quite a long
time.

7.2.3 A New Written Arithmetic Method with Hindu–Arabic
Numbers

At the end of the 12th and the beginning of the thirteenth century a new arithmetic
method appeared in Southern Europe. Thismethodwas spread inArabicmanuscripts
that reached Spain and Sicily via trade routes. The best-knownmanuscript is the ninth
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century arithmetic manuscript of al-Khwarizmi (ca. 780–850), a Muslimmathemati-
cian, astronomer, geographer at the court of al-Mansur in Baghdad. His arithmetic
manuscript has been lost, but Latin translations still exist. In hiswork, he describes the
Hindu system of numeration and a method to do written calculations using this num-
ber system. Several Latin translations and adaptations were made of this manuscript.
Inspired by these works, thirteenth-century European scholars like John of Sacro-
bosco and Alexander of Villa Dei wrote their own arithmetic books. These academic
Latin treatises may have been intended for a learned audience (Folkerts &Kunitzsch,
1997).

The Italian Leonardo of Pisa (also called Fibonacci, ca. 1170–1240) learned the
new arithmetic method during business journeys with his father in North Africa. In
1202, he wrote the Liber Abaci. In this book, he applied the new arithmetic method
on a great many commercial problems. This practical part of his work was copied
by the authors of dozens of Italian arithmetic books. Translations and adaptations of
these books in several languages were made and the new method became popular
in many other European countries including the Netherlands. The audience of these
practical books was not academic.

7.2.4 The Rise of the New Arithmetic Method
in the Netherlands

As far as we know now, the oldest arithmetic manuscript in the Dutch language
teaching the new arithmetic method appeared in 1445. Two other Dutch arithmetic
manuscripts were written in the fifteenth century. From the sixteenth century, 9
Dutch manuscripts and 24 Dutch printed books on written arithmetic with Hindu–
Arabic numbers are in existence. If you take into account that arithmetic books
were consumables used by teachers and traveling merchants, many more books and
manuscripts must have been published at that time (Kool, 1999).

In some of these books both arithmetic methods are explained, the traditional
one with the coins as well as the new written Hindu–Arabic one. Both arithmetic
methods stayed in use over a long time. In Fig. 7.2 you see the two methods being
practised together at the same table, on the left the modern method and in the middle
the traditional one. This picture is from the title page of the arithmetic book written
by the German Ries (1533).

Ries explains that learning the traditional arithmetic method with coins is a good
preparation for learning the newmethodwith pen and paper. In his book, he describes
both methods. It seems that quite a few people in sixteenth century Europe could use
both methods. The mathematician Peter Ramus used the new arithmetical method in
his Arithmeticae Libri Tres (1555), but in private, he said, he preferred the traditional
waywith coins (Verdonk, 1966). Therewas no competition between the twomethods,
as is sometimes wrongly suggested (Boyer, 1968; Swetz, 1989).
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Fig. 7.2 The traditional arithmetic methodwith coins (middle) and the new onewith Hindu–Arabic
numbers (left) on the same table; title page of the arithmetic book written by Ries (1533) (picture
retrieved from Swetz, 1989, p. 32)

In the end, the modern way of calculating with a pen was preferred to the old
manner. But this happened only after a rather long period of time. In 1689 calculation
coins were still struck in the Southern Netherlands (Barnard, 1916).

Why did it take such a long time before the newmethodwas accepted everywhere?
For us it is obvious that it has many advantages as compared with the old one. For
example, you can easily check your written calculation afterwards. In arithmetic with
coins, the numbers you start with disappear from your counting board during your
calculation. Of course, people could check their final result by using the ‘check of
nines’, but it is impossible to read over the process afterwards. In the newmethod, you
can. This new method has more advantages. Using Hindu–Arabic numbers extends
your mathematical options. It is easy to write big numbers, to extract roots and to
calculate with fractions. Using the traditional method people did their calculations
with coins and then used a pen to write down their result in Roman numerals. In the
newmethod, the same instrument—the pen—and the same number system—Hindu–
Arabic—are used for both calculating and recording the result.

Yet, in spite of these advantages it is understandable why the traditional method
with the coins survived for such a long time. Most of the people at that time could
not write. Around 1600 in the Netherlands only 40% of women and 60% of men
were able to sign their marriage certificate (Dodde, 1997). Perhaps more people
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could read, because in sixteenth century Dutch education reading was taught before
writing and many students left school at the time that writing education started,
because they had to work and earn money. The Dutch arithmetician Christianus van
Varenbraken explained in his arithmetic manuscript of 1532 that he describes the
traditional method with coins for people who cannot write. Another advantage of
calculating with coins is that one visualises calculations with concrete objects. And
finally, you do not need a zero. It is easy to understand that an empty place on your
counting board means nothing. In the newwritten number system, you need a zero to
indicate an empty space. You have towrite a sign, although this signmeans ‘nothing’.
And at the same time this magical sign can changes the value of a number when it is
added to it. 4 does not mean the same as 40! People found this difficult to understand.
Authors gave long explanations about the function of zero. Van Varenbraken (1532,
cited in Kool, 1988) wrote about the zero:

This 0 means nothing, he has no value of his own, but 0 gives a value to the other 9 number
symbols. And he makes their value ten times more than the value they have of their own.

Some people were even opposed to the new number system because of the zero.
In Florence, the Arte del Cambio, the guild of money changers, forbade its members
to use the new numbers in their cash books for fear of fraud (Pullan, 1968).

Arithmetic books in theDutch language, that had been available since the fifteenth
century, were not used in the traditional Latin schools, because in these schools all
teaching was done in Latin and arithmetic hardly played a part. During the sixteenth
century, so-called ‘French schools’, inwhose curriculum the towngovernment did not
have a say, were founded by private initiative. Merchants, bankers and other financial
and administrative practitioners sent their sons to these schools to study subjects
like French, bookkeeping and arithmetic. French was the most important business
language at the time. The other subjects at the French schools were taught in the
vernacular. It is clear that these schools were good ‘nurseries’ for future merchants,
bankers and money changers. The arithmetic books in Dutch were used in these
schools. Some teachers wrote and used their own arithmetic book.

7.2.5 The Content of the Dutch Arithmetic Books
from the Sixteenth Century

The authors generally teach the basics of arithmetic, which means that they deal with
the reading and writing of Hindu–Arabic numerals including zero, and the arithmeti-
cal operations: addition, subtraction, multiplication and division. Some authors also
dealt with halving and doubling, which they considered as separate operations. The
arithmetic algorithms they teach largely correspond to those in use nowadays. Only
the division algorithm shows some differences. First calculating with whole numbers
is taught, followed by fractions. To practise the algorithms many examples, worked
out in detail, are presented. Most of these examples deal with money, weights and
measures. In the sixteenth century, each city had its own system of money and
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Fig. 7.3 Subtraction (including a mistake) with two amounts of money from the Dutch arithmetic
manuscript of Christianus van Varenbraken (1532); Ghent, University Library, ms. 2141. fol. 135r
(picture retrieved from Kool, 1999, p. 72)

measures which could make calculations rather complicated. In Fig. 7.3 you see
a subtraction with two amounts of money from the arithmetic manuscript of Van
Varenbraken (1532) from Ghent: 298 lb, 19 shillings, 10 pennies and 16 mites are
subtracted from 334 lb, 13 shillings, 9 pennies and 13 mites. You have to know the
Ghent system in which: 1 lb equals 20 shillings, 1 shilling equals 12 pennies and 1
penny equals 24 mites. It is clear that this complicated calculations and many mis-
takes were made, as you see in the final result of the example: 11 pennies ought to
be 10 pennies.

Authors teach their readers to check their calculations, especially the check of
nines appears often, but apparently this example was not checked. In the first part of
the books sometimes extracting roots is dealt with also, and as said before, calculating
on a counting board.

In the second part of the books elementary arithmetic is applied to solve all
kinds of practical problems, on buying, selling or exchanging of goods, partnerships,
changingmoney, calculating interest, insurance, profit, loss, etcetera. It is clear that it
is useful for future merchants and technical, administrative or financial practitioners
to learn to solve these. The most important rule to solve these practical arithmetical
problems is the rule of three. This rule is used to find the fourth number in proportion
to three given numbers. Because of its importance some authors introduce this rule
in a richly decorated frame, see Fig. 7.4. This picture is from the arithmetic book
by Van Halle (1568). The text says: ‘The rule of three, how you can find the fourth
number out of three numbers’. The other arithmetical rules are mostly variants of the
rule of three.

If you want to solve a problem with the rule of three, you have to place the
three given numbers on a line, multiply the last two numbers and divide the product
by the first one. In Fig. 7.5 you see one of the many problems that is solved by
the rule of three from the arithmetic book by Van Halle (1568). The problem is:
“If nine seamstresses can make fifteen shirts within one day, how many shirts can
six seamstresses make?” Van Halle places 9, 15, and 6 on a line and calculates
(15 × 6) ÷ 9 = 10 shirts.

Of course, there is a more appropriate way to find the solution of this problem.
You can even solve this by doing mental calculations: if nine seamstresses can make
fifteen shirts, three seamstresses can make five shirts and six seamstresses can make
ten shirts. This is much easier, but this kind of clever alternative solution methods is
hard to find in the old arithmetic books. The authors give only one solution method
for each problem. They present standard algorithms that always work in the same
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Fig. 7.4 The exuberant introduction of the important rule of three in the arithmetic manuscript of
Van Halle (1568); Brussels, Royal Library, ms. 3552. fol. 60v (picture retrieved from Kool, 1999,
p. 133)

Fig. 7.5 One of the problems that is solved by the rule of three in the arithmetic manuscript by
Van Halle (1568); Brussels, Royal Library, ms. 3552. fol. 70v (picture retrieved from Kool, 1999,
p. 134)

way, followed by many problems to practise these fixed recipes. There are a few
exceptions, which I will discuss later on.

The problem of the seamstresses is quite simple, but the books contain many
problems that are (much)more complicated. As you can see in the following example
from the arithmetic book by Van Halle (1568):
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Threemerchants are at sea and suddenly a violent stormarises. They have to throwoverboard
a part of their cargo. The value of this part is 100 guilders. In the end, they come home safely
where they have to divide the loss. The first merchant had 300 guilders worth of cargo on
the ship, the second had 400 guilders worth of cargo on the ship and the third one had 500
guilders worth of cargo in the ship. The cargo had a total value of 1200 guilders, of which
100 guilders was thrown overboard. What is the loss of each individual merchant? (Fig. 7.6).

Money changers had to solve problems like the one in Fig. 7.7, from the arithmetic
book by Van der Gucht (1569):

A merchant from Florence went to the exchange bank in London in order to change 120 1
2

ducats at 42 1
4 pennies each into angelots at 66 1

2 pennies each. The question is: How many

angelots will he get in London? The calculation here is: (120 1
2 ×42 1

4 )÷66 1
2 = 76 angelots

and the remainder is 594.

Fig. 7.6 Solution of the problem about three merchants who share the loss they had in a violent
storm at sea; this problem is from the arithmetic manuscript of Van Halle (1568); Brussels: Royal
Library, ms. 3552. fol. 97r (picture retrieved from microfilm)

Fig. 7.7 A problem about changing money, from the arithmetic book by Van der Gucht (1569);
Ghent, University Library, Acc. 1463. fol. 96r (picture retrieved from microfilm)
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The authors of the sixteenth century arithmetic books only usewords and numbers
to describe problems and solution methods. In the first parts of these books the
solution descriptions are very long and cumbersome, but further on in the books,
as you can see in the Figs. 7.5, 7.6 and 7.7, authors use more concise, symbolic
notations and try to limit the number of words. They use lines, crosses and other
graphical means, and signal words with a special meaning, for example, the word
‘proeve’, which means ‘check’. These schematic presentations increase readability,
are easier to learn by heart and reduce the risk of making mistakes. These efforts
to shorten the presentation of calculations prepare the way for the later symbolic
mathematical notation.

7.2.6 Didactic Principles in Dutch Arithmetic Books
from the Sixteenth Century

If you study sixteenth century Dutch arithmetic books you can derive some didactic
principles. Arithmetic skills are needed by merchants and financial, administrative
and technical practitioners. To develop these skills the authors offer a limited number
of standard algorithms to do arithmetic and rules to solve the practical problems they
come across in their professions. They present one solution method for each problem
type and to practise this method they give many similar problems that differ only in
the numbers used. Repetition may help the pupil to remember the solution method.
In some situations, alternative and more convenient solution methods are possible,
but these are rarely shown. Probably the authors want to achieve that their students
can use this method more or less ‘blindly’. They must become skilful reckoners.
Repetition, practise and drill were the main principles of this education. You can
recognise these principles, for example, when studying the tables of multiplication
in the books. In the arithmetic manuscript of Christianus van Varenbraken of 1532,
you see a 12 times 12 table with the exhortation to learn these tables “as well as
your ‘Ave Maria’ without missing anything”. It shows that learning these tables
was a serious matter, as important as learning prayers. An anonymous arithmetic
manuscript of 1594 contains tables of multiplication even up to 17× 27. The author
of this manuscript likewise ordered his students to learn these tables by heart. And
they probably did, because in a timewithout pocket calculators, in a society with very
complicated systems of money, weights and measures, it will be useful to have many
multiplications in your head, especially when you realise that paper was expensive
at the time. Calculations were made on a slate. Arithmetic books were used by the
teacher and mostly not available for students.

When considering the standard rules in sixteenth century arithmetic books, the
practical problems, the many exercises to apply algorithms and fixed recipes, you
can imagine that sixteenth century craftsmen became well trained reckoners within
their profession. If they came across a new mathematical problem they probably did
not know what to do, but that did not matter because they hardly came across new
mathematical problems. They wanted to know the arithmetic of their profession and
they had no need for learning mathematics.
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7.2.7 Interesting Exceptions

In some of the sixteenth century arithmetic books there are problems that do not
fit the previously sketched situation. These problems are not practical at all. They
contain unrealistic stories and have nothing to do with money and commerce. For
example, in the bookwritten by Van der Gucht (1569) there is the following problem:

A man walks 11 miles during the day and at night he walks back for 3 miles. The question
is in how many days he will reach Rome, if the distance to Rome is 500 miles.

It is quite unlikely that a traveller to Romewouldwalk back threemiles each night.
How could this problem end up in a book with practical exercises? Tropfke (1980)
discovered that variations of this problem already appeared in India in the ninth
century, and also in the Arabic manuscript of al-Karagi (late tenth and early eleventh
century), and you canfind it in several European arithmetic books, including theLiber
Abaci ofLeonardo of Pisa from1202. It turns out thatmost of the unrealistic problems
in the sixteenth century arithmetic books are very old and appeared in different
historical mathematical manuscripts. Their function in the sixteenth century books
is not clear. Perhaps it is a matter of tradition, a kind of cultural heritage. Van Egmond
(1980) andTropfke (1980) think that these problems had a recreational function in the
serious practical books, to break the routine. That seems plausible, because authors
like Van Varenbraken (1532) and Stockmans (1595) call these problems ‘problems
for pleasure’ and ‘entertaining problems’. Van den Dijcke (1591) collected all these
curious problems in a special chapter at the end of his book. He introduces this
collection with: “Here you will find many different beautiful problems to sharpen
and enjoy your mind.”

Only a few of the arithmetic books have some of these unrealistic traditional
problems. It is clear that sharpening and enjoying the mind of the readers was not a
common or important purpose of the authors. These problems originally belonged
to the old sources of the academic mathematical tradition and arrived perhaps more
or less ‘accidentally’ in some of the commercial arithmetic books. You can imagine
that an author saw a source with these entertaining problems and added a few to his
own book to bring some variation, but it is clear that these problems may not distract
the students too much from the main aim to learn practical and useful arithmetic.

There is a second unexpected phenomenon in some of the arithmetic books. The
authors call it French or Italian practice. This is a collection of alternative arithmetic
methods with which the arithmetician can speed up and simplify his calculations.
But these methods only work in particular cases and with specific numbers. You
cannot use them blindly and you need arithmetical insight to judge if it is possible
and efficient to use these special strategies.

For example, in Fig. 7.8 you see a problem from the arithmetic book by Van der
Gucht (1569): “How many guilders can you have for 4321 nickels?” To solve this
problem you have to divide 4321 by 20. Van der Gucht advises to put aside the last
cipher of the number and halve the remaining number.

Van Halle (1568) deals with problems like, “If 16 m of cloth cost 99 guilders,
what is the price of 128 m?” Instead of the standard calculation with the rule of
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Fig. 7.8 A fast way to change guilders into nickels, from the arithmetic book by Van der Gucht
(1569); Ghent, University Library, Acc. 1463, fol. 39v (picture retrieved from Kool, 1999, p. 162)

three (99 × 128) ÷ 16 = 792, he advises to divide 128 and 16 by 8 first. Because
then you have to calculate (99 × 16) ÷ 2 = 792, which is much easier. He prob-
ably did not realise that he could simplify the problem even more by dividing
16 and 128 by 16, because then the remaining calculation is even more easier
(99 × 8) ÷ 1 = 792.

This type of insightful efficient calculation only plays a minor part in some of the
arithmetic books. It is conceivable that experienced merchants used many strategies
from the French or Italian practice in their daily work, but in the arithmetic books you
hardly see them. The core business of the teachers was to practise and drill standard
rules and fixed recipes, flexibility was learned during work.

7.3 Arithmetic in the Twenty-First Century

7.3.1 Comparing Sixteenth and Twenty-First Century
Education

Let us make a giant leap to education in Dutch schools of the twenty-first century. It
is not surprising that the differences with the sixteenth century business schools are
huge! In our time, all children, including of course girls, go to school; this is not a
privilege for sons of merchants and bankers. All students learn arithmetic as part of
mathematics for at least ten years, with books of their own, pen and paper, tablets,
laptops, smartboards, computers and calculators. The differences between sixteenth
and twenty-first century education are huge and numerous, but there is one similarity
between the teachers of the sixteenth and their twenty-first century colleagues, they
both want to teach their students the arithmetic they need in daily life, in society
and in their future profession. It seems that the teachers of the sixteenth century
French schools were quite successful in reaching this aim. But concerning twenty-
first century education, there is much discussion about the skills that our students
need to acquire and the way that modern education can contribute to them.
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7.3.2 Twenty-First Century Skills in General

Wagner (2008) speaks of an achievement gap between what schools (in the United
States) are teaching and what is necessary for students to succeed in the current
knowledge society. He argues that students have simply not been taught the compe-
tences that are most important for the twenty-first century. The skills that current and
future professions require, differ significantly from what current education offers.
Wagner gives the following list of what he calls, “the new survival skills”: (1) critical
thinking and problem solving, (2) collaborating and leading by influence, (3) agility
and adaptability, (4) initiative and entrepreneurism, (5) effective oral and written
communication, (6) accessing and analysing information, (7) curiosity and imagina-
tion. Wagner is not the only one who discussed this issue. The twenty-first century
skills that we need to survive in our rapidly changing computerised and globalised
society are discussed by many experts from inside and outside education, and they
give lists comparable to that of Wagner.

7.3.3 Twenty-First Century Skills in Mathematics Education

Making a list of necessary twenty-first century skills is a good thing to start with,
but the next question is what such a list means for the organisation and content
of education, especially mathematics education. Gravemeijer (2012) concluded that
critical thinking, problem solving, collaborating and communicating fit very well
with problem-centred, interactive, mathematics education. These are also the aims
of Realistic Mathematics Education (Van den Heuvel-Panhuizen & Drijvers, 2014)
in which students get the opportunity to work in groups on meaningful problems
guided and supported by their teacher. In this way, students try to reinvent parts of
mathematics. Interaction, discussion, reasoning, asking questions and understanding
are important features of this kind of education. In practice, it turns out that it is
quite challenging to stimulate students to join actively in interactive problem solving
and reasoning, because they are not familiar with it. Students need time to adopt
new classroom social norms and to develop enough self-confidence to explain and
justify their solutions, to try and understand other students’ reasoning, and to ask
questions when they do not understand something, and challenge arguments they do
not agree with. It takes time to change the classroom into a research, annex learning,
community (Cobb & Yackel, 1996). At the same time, it places high demands on
teachers. They can no longer give ready-made solution methods, but have to develop
students’ reasoning to higher levels of understanding by fostering discussions and
asking questions like: What is the general principle here?Why does this work? Does
it always work? Can we prove that? Can we describe it in a more precise manner?
Can we do this in another way? Etcetera. Creating a classroom atmosphere where
students construct knowledge by learning from and with each other demands special
qualities, competences and efforts of the teacher, but it is worth it.
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7.3.4 The Content of the Mathematics Curriculum

Nowwe knowwhat requirements the classroom culturemustmeet to develop twenty-
first century skills, the next question is:What should be the content of themathematics
curriculumwhen computers take over mathematical routine tasks? Focusing on stan-
dard algorithms seems less important. The rise of computers in society and education
places new mathematical demands on students. They have to learn to recognise the
mathematical structure of situations and problems, they need to translate these prob-
lems into tasks that a computer or calculator can execute; this means quantifying
and mathematising reality. So, students must have some idea of what quantifying
(measuring) reality entails. Besides that, they have to understand what a variable
is, and how to reason about interdependencies between variables, and finally they
have to interpret and evaluate the output of the computer. This asks for mathematical
topics such as measuring, tables, graphs, variables, models of relationships between
variables, and elementary statistics (Gravemeijer, 2012).

The more we leave mathematical work to the computer, the more impor-
tant it becomes that we control the computer output in a more or less
approximate way. This asks for arithmetical skills to estimate calculations,
based on networks of number relations and flexible and meaningful use
of features of arithmetical operations. For example, if you want to check
calculations such as: 4 × 26 = 104 and 13% of 888 = 115.44 it
is useful to know number relations like 4 × 25 = 100 and 12, 5% equals 1/8.
And if you want to check 7 × 99 = 693 it is good to know the distributive law
7 × 99 = 7 × 100 – 7 × 1.

You can check 8 × 1.76 = 14.08 by calculating 8 × 1.75. You know 8 × 2 = 16
and 8 × 0.25 = …? You may think 8 × 25 = 200, so 8 × 0.25 = 2 or 8 × ¼=2,
you will find 8 × 1.75 = 16 – 2= 14. But you can also use the arithmeti-
cal rule of halving and doubling, like 8×1.75=4×3.5=2×7=14. It is clear that
8×1.76=14.08. These are just a few examples to show how you can use number rela-
tions and arithmetical rules inmany different ways to check calculations. It is obvious
that there is still much work to do in the arithmetic education of the twenty-first cen-
tury, as it will be a big effort to equip students with sufficient flexible and meaningful
arithmetic skills.

The contrast with the educational aims of the sixteenth century arithmetic books
is enormous. Instead of recognising the type of problem and choosing the standard
recipe to solve it, twenty-first century students have to mathematise a given problem
situation, solve it with or without a computer or calculator and interpret and evaluate
the output by checking it in an approximate way using flexible knowledge of number
relations and arithmetical rules. Instead of recognising a well-known situation, our
students need to recognise the mathematical structure of a new situation. Instead of
using a ready-made solution method, our students need to construct a new solution
method using the arithmetical knowledge and tools they possess.
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We may not underestimate the arithmetical skills of the sixteenth century prac-
titioners. They had to deal with complicated money, weight and measure systems.
They learned fixed arithmetic recipes at school, and it is plausible that they became
experienced in the flexible arithmetical tricks of the French and Italian practice dur-
ing their working life. They were not taught to deal with new arithmetic problems,
but they were experienced, flexible reckoners within the borders of their profession.
Learning arithmetic to solve applied problems is part of the Dutch didactic tradition
until today, but the nature of the applied problems changed during the years and that
asked for different knowledge and skills.

The twenty-first century asks for problem solvers, people who can apply their
arithmetical knowledge to unknown problems in new situations. At first glance, the
computerisation of society makes life easier and more comfortable compared to
the sixteenth century. We no longer have to use long and cumbersome arithmetic
algorithms. But when you realise what our society asks from its members it is clear
that the aims of arithmetic education are much more challenging than they were in
the sixteenth century.

In spite of that, we can learn two important things from the sixteenth century.
School is not the only place where you can learn things. After school, in your pro-
fessional life, learning is still going on. In recent years the lifelong learning concept
has gained adherents because people realise that it is impossible to reach all goals at
the required level in school. That means that we have to make choices in our arith-
metic education. The arithmetic books of the sixteenth century make a suggestion.
Equipping students with a solid basis of arithmetical knowledge seems a valuable
starting point.
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Chapter 8
Integration of Mathematics
and Didactics in Primary School Teacher
Education in the Netherlands

Wil Oonk, Ronald Keijzer and Marc van Zanten

Abstract From the 1970s, curricula of primarymathematics teacher education in the
Netherlands drastically changed. This occurred simultaneously with the changes in
primary mathematics education. Teacher educators systematically discussed math-
ematics teacher education and implemented new content and new approaches in
primary teacher education. This chapter provides a chronological overview of how
Dutch primary mathematics teacher education developed from the 1970s until the
present. We describe ideas about learning to teach mathematics and ideas about the
relationship between the development of mathematical literacy and didactical pro-
ficiency of student teachers. Furthermore, the influence of national measures such
as the introduction of nationwide tests for primary mathematics teacher education
is discussed. The chapter ends with an impression of recent learning materials for
student teachers and a reflection on new perspectives for integrating theory and prac-
tice, emphasising the continuous search for a well-balanced way to interconnect
mathematics and didactics.

8.1 Introduction

In 1858 criticism on the education of teachers in the Netherlands led to the estab-
lishment of the first teacher education institutions by law (Van Essen, 2006). The
curricula of these institutions were almost the same as those for the higher grades
of secondary school, with pedagogy and half a day a week for teaching practice
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added. The mathematics curriculum included, for example, algebra, planimetry and
stereometry (Van Beek & Van Heek, 1924, 1925, 1926).

This situation did not change fundamentally for decades. Even in 1952, when cur-
ricula changed as a result of the Nieuwe Kweekschoolwet (New Teacher Education
Act), little changed in daily practice because most teacher educators were the same
people as before the Act, and they saw no reason to change their teaching approaches.

In 1968 teacher education institutions were renamed into Pedagogische
Academies (Pedagogical Academies). In 1985, after years of discussion (see Inno-
vatie Commissie Opleidingen Basisonderwijs, 1980) kindergarten schools and pri-
mary schools, were integrated into primary schools for children from 4 to 12. The
respective teacher education institutions were also integrated into the Pedagogis-
che Academies voor het Basisonderwijs (Pedagogical Academies for Primary Edu-
cation). After a few years, criticism from the Onderwijsraad, the Dutch national
advisory council for education (Onderwijsraad, 1988) and OCW, the Ministry of
Education (OCW, 1990), mainly on the insufficient academic level and the lack of a
clear education concept at the teacher education institutions, again led to a revision
of the teacher education curriculum. This time the curriculum had to be based on
a well-defined education concept and should fit within the framework of a specific
teacher education didactics. Problem-based learning and thematic education were
adhered to, and teachers from all disciplines were expected to develop their own
educational materials according to these two concepts (Goffree & Oonk, 1999).

From the beginning in 1991, external quality monitoring of teacher education
institutions mostly considered general characteristics of the institutions’ curricu-
lum and hardly focused on school subjects. Over the years less and less attention
was paid to the development and enforcement of mathematics and other subjects
in teacher education, which resulted in a decrease in attention for subject-specific
content knowledge in the teacher education institutions (Van Mulken, 2002; Onder-
wijsraad, 2005). However, from time to time the HBO-raad, the Council for Higher
Professional Education, took measures to secure the mathematical proficiency of
student teachers, mainly through including mandatory mathematics tests (Keijzer &
Hendrikse, 2013).

In this chapter, we describe primary school teacher education in the Netherlands,
taking the year 1971 as a starting point, which is the year that the IOWO1 (the first
predecessor of the Freudenthal Institute) was founded. In the final section of this
chapter we provide a new perspective on learning to teach mathematics, the relation-
ship between the development of mathematical literacy and didactical proficiency
and recent influences on primary school mathematics teacher education.

1Instituut voor de Ontwikkeling van het Wiskunde Onderwijs (Institute for the Development of
Mathematics Education).
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8.2 Mathematising and Didacticising

8.2.1 The Influence of Freudenthal on Mathematics Teacher
Education

In 1971 Hans Freudenthal became the first director of the IOWO, where two years
earlier the Wiskobas2 project had started (see Freudenthal, 1978; Treffers, 1978;
1987). This Wiskobas project for mathematics in primary school was intended to
develop a new approach to mathematics education together with teachers and student
teachers, with the intention to teach them at the same time how to implement this
new approach. A strong belief of Freudenthal and his team was that the curriculum
for primary school mathematics teacher education should be developed in close
connection with the primary school mathematics curriculum. Shortly after the first
Wiskobas curriculum publications were published, an educational experiment was
started at a teacher education institution in Gorinchem (Goffree, 1977; Goffree &
Oonk, 1999). Every week, Freudenthal and twomembers of theWiskobas teamwent
to this small town and attended the lectures given to the student teachers and visited
the school where the student teachers acquired practical experience. Freudenthal
worked with the children to show the student teachers how it is possible to initiate
and observe mathematical learning processes. His observations and analyses were
intended to convey to the student teachers the idea of the teacher as a researcher and
give them the feeling that there was much that could be learned from the children
themselves. Freudenthal also introduced a narrative element into the teaching with
stories such as “WalkingwithBastiaan” (Freudenthal, 1977).Materials for the student
teachers were developed and tested. Freudenthal made theoretical contributions to
these materials as evidenced, for example, by his work on the analysis of fractions
and ratio as mathematical objects (Freudenthal, 1983). Freudenthal’s approach had
a great impact on the teacher education institution in Gorinchem (see, e.g., Goffree,
1979).

8.2.2 A Model for Learning to Teach Mathematics

The experiences in Gorinchem were discussed regularly in a national group of math-
ematics teacher educators. Materials for student teachers were tried out nationwide
and rewritten by the staff of theWiskobas project. All this led to a model for learning
to teach mathematics (Fig. 8.1).

The model shows, starting from the left, that mathematics education, both for
student teachers and children, takes meaningful mathematical situations as its start-
ing point. For children, it implies the activation of subjective, informal structures,
which allows the mathematical learning process to start with children’s intuitive

2Wiskunde op de Basisschool (Mathematics in Primary School).
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Fig. 8.1 Model for learning to teach mathematics (Goffree, 1979, p. 313; Goffree & Oonk, 1999,
p. 209)

notions and informal procedures. Under the guidance of the teacher who knows the
objective structures of mathematics (formal mathematics), they get the opportunity
to rediscover mathematics (Freudenthal, 1983), experiencing a process of guided
reinvention (Freudenthal, 1991).

For the student teacher, whose subjective, informal structures are affected by his
or her earlier experiences with learning and teaching mathematics, learning to teach
is considered a process of both mathematising and didacticising (Freudenthal, 1991).
Keijzer (1994, p. 4) expresses this as follows:

Reflecting on learning experiences as a starting point for learning to teach mathematics. In
teacher education, student teachers’ experiences with learning mathematics are discussed
from time to time, especially shortly after student teachers enter teacher education. One
teacher educator decides to use this focus in the very first meeting with first-year prospective
teachers. One student teacher recalls learning the algorithm for long division and another
tells how she masked her struggle with mental arithmetic by finger calculations hidden from
the teacher. The teacher educator concludes: “Our talk on early experiences with learning
mathematics showed that reflecting onone’s ownmathematical acting forms a fruitful starting
point for exploring didactical content knowledge.” (translated from Dutch by the authors)

The view on learning to teach mathematics as represented by the model in Fig. 8.1
is that learning to teach mathematics should start by student teachers carrying out
mathematical activities at their own level. Reflections on children’s learning pro-
cesses combined with the student teachers’ own experiences in learning mathemat-
ics contributes to the creation of an educational basis for teaching mathematics. Big
ideas from general educational theory, rooted in either didactics or formal mathe-
matics, can also contribute. It is assumed that in this way student teachers will get
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into a cyclical process of solvingmathematical problems,mathematisation, reflective
problem solving, and mastering teaching approaches. Meanwhile, student teachers
work with children and study their learning processes while continually referring
to their own learning processes. While doing so the student teachers integrate their
subject matter knowledge and didactical content knowledge,3 in other words, they
coherently develop both mathematical and didactical knowledge.

8.3 New Developments in Primary School Mathematics
Teacher Education

8.3.1 Mathematics & Didactics as a New Subject for Student
Teachers

In the 1980s, the model described in Fig. 8.1 was elaborated into the new subject
Mathematics & Didactics4 in primary school mathematics teacher education, based
on the book series Wiskunde & Didactiek (Goffree, 1982/1994, 1983/1992, 1985,
1993/2005, 2000). This series of books was used in the 1980 s and 1990 s in more
than eighty percent of the Dutch teacher education institutions. Goffree (1982, p. 7)
formulated the approach to primary schoolmathematics teacher education as follows:

Learning to teach mathematics

We think that youwill best learn to teach by first working onmathematical problems yourself.
Of course, these problems have to refer to the subjectmatter you are going to teach. Therefore,
most chapters of this book start with simple mathematics problems. Thinking through these
problems together helps you to look back at your own and your peer students’ solutions from
a different point of view.We call this reflection: thinking deeply on finding newways, using a
sketch or material, getting another explanation, a state of still not understanding or suddenly
grasping it […]. We think this is important. It builds up the beginning of your didactical
thinking, because you can expect similar situations if you are going to teach mathematics to
children. (translated from Dutch by the authors)

3Although in international publications this is often referred to as ‘pedagogical content knowledge’,
in the Netherlands, the term ‘didactical content knowledge’ is preferred. By using ‘didactical’, it
is made clear that here knowledge is meant that is related to the teaching of mathematics and not
knowledge about interacting with children and creating an environment at school that socially,
psychologically and physically supports their development.
4The &-sign between mathematics and didactics symbolised the ambition of the author of the text-
books to optimize the student teachers’ integration of their subject matter knowledge and didactical
content knowledge.
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8.3.2 The Influence of Quality Monitoring

In 1985 theDutchMinistry ofEducationproposed anewsystemof qualitymonitoring
in higher education, which, in the same year, was adopted by theDutch parliament. In
this system, the institutions for higher education themselves became responsible for
quality monitoring, while the government would follow this process from a distance
(OCW, 1985; Van Bemmel, 2014). Following this advice, the HBO-raad5 (Council
for higher professional education) arranged inspections in primary teacher education;
the first one took place in 1991. Focal points in both this first inspection and in the
second one included: curriculum, prospective teachers’ level, assessment systems,
and student teachers’ educational process. These points potentially offered chances
to evaluate the mathematics curriculum within teacher education. There was a need
for such an evaluation, as primary student teachers’ mathematics proficiency was
a concern of many (Brandt, Feijs, Groen, & De Moor, 1987). Such an evaluation,
however, did not happen. The inspection focused only on general aspects of teacher
education and was not equipped to look at more domain specific issues (Keijzer,
1993).

8.3.3 Growing Attention to Student Teachers’ Mathematical
Literacy

Alongside the development of a programme for primary school mathematics teacher
education, there were growing concerns about the mathematical proficiency of stu-
dent teachers (Jacobs, 1986; Brandt et al., 1987) As a reaction, the Mathematics
& Didactics series was extended with a book especially aimed at the development
of student teachers’ mathematical proficiency (Goffree, Faes, & Oonk, 1988, 1994;
Goffree & Oonk, 2004). This book contained mathematics problems selected from
primary school mathematics textbooks, each problem was provided with reflective
solutions at the level of student teachers. The view of the authors was that comparing
one’s own solutions with expected solutions of children and with expert solutions
and discussing them, would raise the student teachers’ mathematical literacy, and
also strengthen their didactical proficiency.

Cooperating mathematics teacher educators also encouraged the Council for
Higher Professional Education, to support the development of materials to tackle
the problem of student teachers’ low mathematics abilities. This led to the series
Wiskunde Verplicht (Mathematics Required) (Faes & Oonk, 1989a, b, c, 1990) with
which student teachers could refresh their mathematical skills. In addition, there was
the series Gecijferdheid (Mathematical literacy) (Faes, Van den Bergh, & Olofsen,
1992) with example problems on mathematical literacy, which teacher educators
could use to develop a test for student teachers, that could be administered parallel

5Currently ‘Vereniging Hogescholen’.
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− Calculate using an efficient strategy: 412 – 97.98 =

− What scale should be used to fit a map of the Netherlands on an A4-
sheet? Make sure the space on the sheet is maximally covered with 
the country. Write your answer as: 1 : _____.

− Design a situation that leads to the number sentence ‘2.25 ÷ 0.75’.

Fig. 8.2 Problems from the 1992 Mathematical Literacy Test

to the other first-year test. The problems provided for the mathematical literacy test
assessed, for example, student teachers’ ability in using efficient strategies in tack-
ling number problems or showing insight in measurement. Figure 8.2 shows some
typical problems from this test.

From 1992 on, most teacher education institutions for primary education devel-
oped and used local adaptations of this test to assess their first-year student teachers’
mathematics skills. In addition, as this test asked for mathematical knowledge of a
specific nature, the first-year curriculum gradually incorporated this knowledge. This
curriculum started to focus more on efficient strategies to solve number problems,
various meanings of (rational) numbers and number relations, meaning in measure-
ment (including personal references to measures), estimation, and geometry. How-
ever, although the tests used were inspired by a series of prototypical examples, the
(adapted) tests differed significantly between institutions, with respect to the topic
in the test, the difficulty level of the problems, and the pass mark.

8.4 Standards for Primary School Mathematics Teacher
Education: Adapting the View on Learning to Teach
Mathematics

8.4.1 Towards Standards for Primary School Mathematics
Teacher Education

After discussions with all the experts involved, the new approach to primary math-
ematics education in the Netherlands that had been stimulated by Hans Freuden-
thal, and that was now known as Realistic Mathematics Education (RME), led to
the Proeve van een Nationaal Programma voor het Reken-wiskundeonderwijs op de
Basisschool (Treffers, DeMoor, & Feijs, 1989), a first design for setting up a national
programme for mathematics education in primary school. Following this programme
and the standards for mathematics evaluation and teaching of the National Council of
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Teachers of Mathematics (NCTM, 1989, 1992), a group named PUIK,6 consisting of
ten mathematics educators, started in 1990 to develop standards for primary school
mathematics teacher education. For example, on the student teachers’ insight into
children’s learning processes these standards state the following:

– Student teachers acquire insight into children’s learning processes in the area of
mathematics.

– Student teachers analyse data from children’s mathematical activities (written or oral data,
or data on videotape) from various perspectives.

– Student teachers develop activities themselves to acquire insight into children’s learning
processes.

– The student teachers regularly talk with individual children (in clinical interviews) about
specific problems and their solutions.

– Student teachers study material (such as from Kwantiwijzer7) about carrying out
diagnostic interviews with children, and then hold interviews in accordance with it.

– Learning processes in the area of mathematics are a frequent topic of lectures, small group
work and reading assignments.

– How to increase the level of understanding of both children and students is a topic of
mathematical educational research.

– Children’s own mathematical productions provide study material for small group work
on mathematics education and also serve as illustrations of knowledge transfer (Goffree
& Dolk, 1995, p. 74).8

8.4.2 Constructive, Reflective, Narrative

The philosophy of teacher education elaborated in the handbook of Goffree and Dolk
(1995) was founded on three pillars: primary school mathematics teacher education
should be constructive, reflective, and narrative. This approach to teacher education is
an adaptation of the socio-constructivist vision of knowledge acquisition, reflection
as the main driving force of the professionalisation of teachers, and the interpretation
of practical knowledge as a way of narrative knowing. According to Oonk, Goffree,
and Verloop (2004, p. 137), “Real teaching practice has to be the starting point of
teacher education.” In the attempt to have these pillars into new curriculummaterials
for primary school mathematics teacher education, the PUIK group faced essential
questions: What represents ‘real teaching practice’? How can curriculum designers
give a learning environment a ‘natural’ aura? Moreover, what is meant by ‘natural’?
Fieldwork practice is natural by definition, but when student teachers discuss this

6Programmering, Uitlijning, Invulling enKwaliteit (Programming, outlining, filling-in and quality).
7The Kwantiwijzer project developed diagnostic instruments based on the ideas of Wiskobas (Van
Eerde, 2005).
8See for all eighteen standards: http://www.mtedu.utaipei.edu.tw/mathweb/opendata/%E8%8D%
B7%E8%98%ADstandards.pdf

http://www.mtedu.utaipei.edu.tw/mathweb/opendata/%25E8%258D%25B7%25E8%2598%25ADstandards.pdf
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practice, they often stick to a superficial interchange of ideas and opinions (Ver-
loop, 2001; NCTM, 2000). Rarely do these discussions reach a level of theoretical
reflections. How could the PUIK group solve this problem?

Oonk et al. (2004) mention three important issues that are central to the discus-
sion about these problems. First, learning in practice is mostly a solo task because
student teachers do rarely have the opportunity to discuss common experiences and
observations, necessary to acquire deep rooted knowledge. Second, student teachers
usually focus on fulfilling responsibilities and on survival issues, so their reflections
on their profession are dominated by talking about actions. Third, as a result, student
teachers do not acquire practical knowledge that can be generalised across situations
or organise their narratives of teaching into a broader framework.

The PUIK group got a new perspective on these problems when they visited the
School of Education of the University of Michigan where they were introduced to
the Student Learning Environment (SLE) designed by Lampert and Loewenberg Ball
(1998). The SLE became a source of inspiration for the making of the Multimedia
Interactive Learning Environment (MILE) for primary mathematics student teachers
in the Netherlands (Dolk, Faes, Goffree, Hermsen, & Oonk, 1996).

8.4.3 Mile

All Dutch teacher education institutions participated in the MILE project. The goal
of MILE was to enable student teachers to investigate good practice in teaching pri-
mary mathematics. ‘Good practice’ here meant practice being in line with the Dutch
standards for primary mathematics education and with those for primary school
mathematics teacher education. Other characteristics of the good practice offered by
MILE were:

– Showing authenticity of real practice in school.

– Representing the complexity of real teaching practice, exemplary for the programme of
primary education.

– Taking into account learning strands and of students’ learning processes: education in the
vein of RME.

– Providing researchable reflective practice of expert teachers and some theoretical input
by the designers (Oonk et al., 2004, p. 145).

The MILE database included materials on mathematics education from Kinder-
garten through Grade 6, involving recorded, connected lessons, discussions with
teachers and supervisors, and textbooks and other materials. It was possible to study
each lesson as a whole or in short fragments. Keyword searches of the fragment
descriptions and lesson dialogues could be done using a search engine. Every lesson
fragment reproduced a teaching instance and a short description that provided further
clarification (Fig. 8.3).

Research showed that student teachers were often not only focused on the actual
teaching of mathematics when watching the fragments in MILE, but also on general
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Fig. 8.3 The MILE start-up screen

didactical and pedagogical issues (Oonk, 2001, 2009; Goffree & Oonk, 2001; Oonk
et al., 2004). MILE thus offered the possibility to use the school subject mathematics
as an arena for theoretical reflections that connect with larger didactical and ped-
agogical ideas. Furthermore, working with MILE, four levels of student teachers’
knowledge construction were distinguished (Oonk, 2009, pp. 74–75; Oonk et al.,
2004, p. 152):

Four levels of student teachers’ knowledge construction:

– Knowledge can be taken from the expert teachers in MILE; student teachers expand their
own didactical repertoires through assimilation of the practice knowledge contained in
MILE.

– Adaptation and accommodation of practice knowledge can modify the repertoires of the
MILE teacher to suit student teachers’ own purposes.

– Establishing (new) links between the events in MILE and events from student teachers
own trainee practice and related theory; this is the level of integrating theory, in which
they might (re)consider didactical insights and points of view.

– The level of theorising manifests itself when student teachers designed their own local
theories; they built up ideas about causes and consequences through the observation and
interpretation of fragments they themselves found in MILE.

The results of research on the activities of fifty second-year student teachers
(Oonk, 2001) revealed that they used theory as a means to understand and explain
practical situations. The majority of the student teachers themselves believed that
working with MILE enabled them to apply and further explore the knowledge that
they already had. The following transcript of a discussion shows how two second-year
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student teachers working in MILE were searching for appropriate theory when they
compared, faced and considered which material or model is (or is not) appropriate
and why.

Denise andMarieke are watching and analysing a video clip about Fadoua, a Grade 2 student
and her teacher at the instruction table. We see how the teacher identifies in a diagnostic
discussion the way of thinking behind Fadoua’s mistake (18-6=11). It appears that Fadoua
counts backwards starting from 18 (‘initial error’) and while counting backwards also skips
two numbers (12 and 14).

The two student teachers discuss the most appropriate way to assist Fadoua.

Denise I think solving the problem using 18 blocks (units) may help.

Marieke I don’t think this will help, because it doesn’t solve Fadoua’s counting problem.

Denise Maybe the number line?… eh…

Marieke That will not help for the same reason.

Denise I suddenly think that the fives structure of the arithmetic rack with twenty beads
can help Fadoua either by directly subtracting 6 or by splitting to yield 8-6 or 18-6.
And that doesn’t involve counting anymore.

Marieke I agree, I canwell remember fromearlier clips that Fadouahasmost likelymastered
splitting the numbers to ten (…). In this case we can probably indeed use the
arithmetic rack teaching method. (Oonk, 2001, p. 21)

A number of the student teachers demonstrated a budding appreciation for theory.
However, others lost their way inMILE and rarely reached beyond a superficial level
of reflection. The frame of reference of these student teachers appeared somewhat
diffuse and fragmented. An important side-product of the MILE project was the
accompanying professional development for mathematics teacher educators at one-
day conferences.

8.5 New Ideas About Learning to Teach Mathematics

After 2000, the earlier ideas about primary school mathematics teacher education
remained as a kind of natural fundament within the community of mathematics
teacher educators in the Netherlands. These included the ideas of RME, the pil-
lars constructive, reflective and narrative, and the integration of mathematics and
didactics.

However, important questions crossed the boundary of the centuries and remained
to influence the discussions about the way to go: How could the integration of theory
and practice for student teachers really be shaped? And how could student teachers’
reflections on (their) teaching practice be brought to a higher level? For example,
most teacher educators were convinced that video recordings served the purpose of
reflection on real practice, but so far, the student teachers’ experiences remained to
be proved against this assumption. Developments at different levels of mathematics
education in the Netherlands brought new perspectives to answer these questions.
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First, the Freudenthal Institute, partly in cooperation with the Netherlands Insti-
tute for Curriculum Development (SLO) and the CED-Group,9 developed in the
TAL10 project the so-called ‘Teaching-learning trajectories’ for most domains of pri-
mary mathematics education (Van den Heuvel-Panhuizen, 200811; Van den Heuvel-
Panhuizen & Buys, 200812; Van Galen et al., 200813; Gravemeijer et al., 201614).
These extended descriptions of the learning pathways in mathematics provided
teacher educators and authors of mathematics textbooks series with well thought
out ideas about mathematical learning processes of primary school students.

Second, a large-scale research project for mathematics teacher education was set
up. The purpose of this Theorie In Praktijk (TIP; theory into practice) project (Oonk,
2009) was to gain insight in the student teachers’ way of integrating theory and
practice, and particularly to find out how they relate theory and practice and to what
extent they are competent to use theoretical knowledge in multimedia educational
situations. The studywas performed at eleven teacher education institutions. A learn-
ing environment was designed to optimise the opportunity for theory use. Theory
was recognisable in a multifunctional set of concepts,15 covering a local instruction
theory (Gravemeijer, 2004). The set was multifunctional in the sense that it became
manifest in expert reflections on video clips (Goffree, Markusse, Munk, & Olofsen,
2003), through a link that provided extra information, and in a list of concepts to
use during the course. The latter functioned as a tool to check one’s own progress in
understanding the concepts.

The TIP study showed among other things that the learning environment was
a catalyst for the development of the student teachers’ so-called ‘theory-enriched
practical knowledge’. The student teachers’ use of theory could be identified uni-
vocally and described at different levels. These levels turned out to have a positive
correlation with the student teachers’ level of mathematical literacy and the level of
their previous education. A rise in the level of theory use took place especially in
interaction led by the teacher educator (Oonk, 2009).

A third development, that occurred simultaneously with the two previously
described developments, is that the Panama Kerngroep (Panama core group)16 of

9The CED-Group trains and advises professionals in education and child care.
10Tussendoelen Annex Leerlijnen (Intermediate attainment targets and learning lines).
11Published in Dutch in 1999 and 2001 (Treffers, Van den Heuvel-Panhuizen, & Buys, 1999; Van
denHeuvel-Panhuizen, Buys, & Treffers, 2001) and in English in 2001 (Van denHeuvel-Panhuizen,
2001).
12Published in Dutch in 2004.
13Published in Dutch in 2005.
14Published in Dutch in 2007.
15The idea for such a set originated from a research project on MILE (Oonk, 2001), where a list
of concepts was used (Bos, 1999) to inform the student teachers about keywords for the course at
hand.
16Panama stands for: Pabo Nascholing Mathematische Activiteiten (Pedagogical Academy Train-
ing Mathematical Activities). Panama is the Dutch network of mathematics teacher educators for
primary education. One of the activities of Panama is organising the annual Panama Conference.
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mathematics teacher educators organised a discourse about the curriculum for pri-
mary school mathematics teacher education. This discourse inspired the members
of this group to write a book about their experiences, considerations, and dilem-
mas when teaching primary mathematics student teachers (Van Zanten & Van Gool,
2007).

Reflections on the stories in this book were used to arrive at six quality landmarks
of good practice in primary school mathematics teacher education:

1. Mathematics-specific coaching when student teachers practice their teaching in school

2. Enough opportunity to develop a mathematical and didactical repertoire

3. Including student teachers’ mathematical literacy in the binding study advice

4. Developing student teachers’ mathematical literacy

5. Opportunity for reflection and further professionalisation of mathematics teacher
educators

6. Ample attention for mathematics specific development of student teachers, including
mathematical attitude. (Van Zanten & Van Gool, 2007, pp. 111–115). (translated from
Dutch by the authors)

Some of these landmarks came into being in the form of mandatory mathematics
tests and the development of a knowledge base for mathematics for prospective
teachers.

8.6 A Mathematics Entrance Test for Student Teachers

Teacher education institutions adapted the 1992 Mathematical Literacy Test in var-
ious ways. As a result, this test did not secure a fixed mathematics ability level for
the prospective primary school teachers (Straetmans & Eggen, 2005). The inspec-
tion of teacher education institutions already brought to the fore in 2002 that this
situation was problematic, and also found that not all institutions took the level of
mathematical proficiency into consideration in the binding study advice that was
given to the students at the end of their first year. In school year 2006–2007, this led
to the nationwide introduction of a mandatory entrance test, the Wiscat Test. From
this year on, all prospective teachers needed to pass this test in the first year of their
study. This meant that the third landmark of quality that the Panama Core Group
formulated already had become reality, though not in the way they intended or had
wished. The Wiscat Test was designed in such a way that the scores of the student
teachers could be compared with the mathematics proficiency of primary school
students. Student teachers had to show a better mathematics proficiency than eighty
percent of students at the end of primary school. So, it can be concluded that the pass
mark of theWiscat Test is low. This pass mark requires less mathematical ability than
was originally intended in the Mathematical Literacy Test, and for several teacher
education institutions it meant a lowering of the required level of mathematical com-
petence in the first year of teacher education (Van Zanten & Van den Brom-Snijders,
2007). Therefore, they decided to set additional requirements for student teachers.
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Fig. 8.4 Two problems from
the 2006 Wiscat Test 2.5 % of an amount is €9.- 

What is the full amount?
€[   ].[  ] (blanks should be filled in)

On a map with scale 1 : 12,500,000
the distance between Den Bosch and Prague is 7 cm.
The original distance is?
[   ] km (blank should be filled in)

However, a significant number of teacher education institutions chose not to do so
(Keijzer, 2010). Figure 8.4 shows typical problems from the Wiscat Test.

The Wiscat Test is a computer-based test and asks student teachers to provide
only an answer. Open questions, as in the 1992 Mathematical Literacy Test, are
not included. In a sense, this approach is also reflected in the curriculum for pri-
mary school mathematics teacher education. Teaching for mathematical literacy was
replaced by teaching how teachers and students could produce answers. Several
teacher education institutions offered many hours of support for student teachers
who needed practise for the test (Keijzer, 2010). Student teachers in their turn often
developed or maintained an instrumental way of learning and practicing mathemat-
ics, as this appeared to be appropriate to pass the test. Moreover, many institutions
chose to not assess mathematics skills, other than those in the Wiscat Test (Van
Zanten & Van den Brom-Snijders, 2007). Consequently, many prospective teachers
considered the entrance level of this test as a sufficient end level of mathematical
proficiency for teaching mathematics in primary education.

8.7 The Knowledge Base for Primary Mathematics Teacher
Education

8.7.1 Background

Mathematics teacher educators kept articulating their concerns about the mathemat-
ical proficiency of their students (Van Zanten, 2006) and the inability of the Wiscat
Test to address this problem. In the first decade of this century, there were also
growing concerns about the declining amount of attention that teacher education
institutions paid to mathematics (as well as to other subjects) (Onderwijsinspectie,
2008; Onderwijsraad, 2005).

After 2005, primary school mathematics teacher education in the Netherlands
became one of the issues in a debate that followed the somewhat disappointing
results for Dutch students in TIMSS and PISA (OECD, 2004; KNAW, 2009; Mullis,
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Martin, Foy, & Arora, 2012). Especially, the study load in teacher education was
discussed. In 2008, over the four years in teacher education, student teachers spent
on average about 350 hours on studying mathematics, which many experts in the
field consider a very low study load to cover the whole range of mathematical and
didactical content knowledge. Moreover, there were enormous differences in the
mathematics study load between teacher education institutions. In some institutions,
the study load did not even exceed the amount of 120 hours in four years, i.e., an
average of 30 hours per year (Keijzer, 2010).

The concerns about the proficiency of primary school teachers led to the decision
to make a knowledge base for mathematics and language (HBO-raad, 2008; OCW,
2008). TheHBO-raad assigned the development of a knowledgebase formathematics
to a group of mathematics teacher educators under the name of ELWIeR17/Panama.
This resulted in the publication ofKennisbasis Rekenen-wiskunde Voor de Lerareno-
pleiding Basisonderwijs (Van Zanten, Barth, Faarts, Van Gool, & Keijzer, 2009), or
in short, the Knowledge Base. The ELWIeR/Panama group developed the Knowl-
edge Base in close collaboration with mathematics teacher educators from all Dutch
teacher education institutions (Van Zanten, 2010).

8.7.2 Defining Professional Mathematics Literacy

The Knowledge Base was meant to provide a description of mathematical knowl-
edge for teaching. Therefore, it had to include both subject matter knowledge and
didactical content knowledge. In line with the idea that mathematising and didac-
ticising are interconnected, the developers of the Knowledge Base saw these types
of knowledge as two sides of the same coin. Their basic assumption was that teach-
ers’ own mathematical literacy provides the foundation of their didactical reper-
toire. Mathematical content knowledge and knowledge of didactics for mathematics
were seen as highly interrelated and inextricably connected. Following an earlier
study on mathematical literacy for student teachers (Oonk, Van Zanten, & Keijzer,
2007), the ELWIeR/Panama group defined professional mathematical literacy as a
subject-specific competency for student teachers including: having a sufficient level
of mathematical literacy of one’s own, being able to give meaning to mathematics
for students, being able to stimulate calculation methods and raise students’ com-
petency, and being able to stimulate students’ mathematical reasoning (Van Zanten
et al., 2009).

17Expertisecentrum LerarenopleidingenWiskunde en Rekenen (Expertise Centre Teacher Training
Mathematics and Arithmetic).
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8.7.3 Content of the Knowledge Base

The final version of the Knowledge Base consists of two parts: general theory and
domain descriptions. The first part broadly describes general information aboutmath-
ematics education. This includes several kinds of goals of mathematics, varying from
the legally established core goals to underlyingvalues ofmathematics education, such
as preparing students for participation in society. Second, the general theory describes
the varying learning processes that occur, for example mathematical reasoning, ver-
balising solution processes and memorisation, to name a few. In connection with
this, didactical insights are given, with a prominent place for the notions of RME.

The second part includes descriptions of five mathematical domains: whole num-
bers; proportions, percentages, fractions and decimal numbers; measurement; geom-
etry; and relations. These descriptions consist for the largest part of descriptions
of domain specific mathematical and didactical content knowledge. Furthermore,
appearances and relevance of the domain in reality are specified, as well as the
intertwinement and connectednesswith other domains andwith other school subjects.

8.8 The Knowledge Base Test

8.8.1 Content of the Knowledge Base Test

After the Knowledge Base for mathematics was established, a test was developed for
assessing student teachers’ knowledge. This new nationwide Knowledge Base Test
for third-year student teachers had to guarantee that the prospective teachers master
the knowledge described in the Knowledge Base. However, this test only includes the
mathematical content knowledge, and not the didactical content knowledge described
in the Knowledge Base (Keijzer, Garssen, & Peijnenburg, 2012).

With the introduction of the Knowledge Base Test in 2013, prospective teachers’
mathematics proficiency is not only assessed at a basic level in an entrance test
(through theWiscat Test) but also at a far higher level in the third year. This situation
demanded specific investments in mathematics content matter knowledge in primary
school mathematics teacher education (Keijzer, 2015a).

The Knowledge Base Test is computer-based. Student teachers’ knowledge is
assessed in all five domains described in the Knowledge Base. The test items are
related to what Ball, Thames, and Phelps (2008) refer to as mathematics on the
horizon, common content knowledge, and specialised content knowledge. Figure 8.5
shows some typical problems from this test.
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- Estimate the number of minutes you have lived the day you celebrate your 18th birthday.

- Which numeral is in the ten-position in the answer of 877651 × 76523?

- What is the decimal number 25 written as a binary number?

Fig. 8.5 Problems from the 2013 Knowledge Base Test

8.8.2 Influence of the Knowledge Base Test
on the Curriculum for Primary School Mathematics
Teacher Education

Between 2009 and 2015 the average study load for primary school mathematics
teacher education rose from about 350 hours to about 485 hours, again with huge
differences between the teacher education institutions. The emphasis on the cur-
riculum for primary school mathematics teacher education shifts from didactical
content knowledge to all aspects of mathematical knowledge for teaching, including
mathematics content matter knowledge. Furthermore, to support student teachers,
there was a shift from preparing prospective teachers for the 2006 Wiscat Test to
preparing them for the Knowledge Base Test (Keijzer, 2015b). But, when doing so,
teacher educators struggled a bit with the intentions of the Knowledge Base Test. The
Knowledge Base was introduced to guarantee mathematical knowledge for teach-
ing as a connected body of knowledge for prospective teachers. Teacher educators
expressed concerns that prospective teachers might be unable to pass the Knowledge
Base Test and will drop out of teacher education, while shortly before these prospec-
tive teachers would have graduated and functioned well in teaching practice (Lit,
2011). Another concern was that teacher educators with insufficient background in
mathematics foresaw that they might have difficulties when preparing their student
teachers’ for the Knowledge Base Test (Keijzer et al., 2012). Moreover, the nature
of this test might force many mathematics teacher educators to spend a significant
portion of teaching time to test preparation at the expense of paying attention to
connecting the mathematical content to didactical content knowledge.

8.9 Recent Learning Materials for Student Teachers

Previous developments led to new learningmaterials for primary schoolmathematics
teacher education. Currently, the market for this educational domain in the Nether-
lands is mainly determined by the book series Reken-wiskundedidactiek (Didactics
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of mathematics)18 and Rekenen-wiskunde in de Praktijk (Mathematics in practice).19

These two book series that cover the complete curriculum for primary mathematics
teacher education show many similarities in how they combine the implementation
of the Knowledge Base and the Knowledge Base Test with the approach of integrat-
ing mathematical and didactical content knowledge. Both series encompass both the
mathematical and didactical content knowledge described in the Knowledge Base
and explicitly connect these two types of knowledge with each other. Both provide an
overview of mathematical and didactical concepts in doing so. Also, the contents of
both series are inspired by RME, and in both series the pillars constructive, reflective
and narrative are recognisable. Each of the series pay attention to raising the mathe-
matical literacy of student teachers towards the level required for theKnowledgeBase
Test. Further, both series stress student teachers’ competences in learning to teach
mathematics meaningfully, in stimulating students’ mathematical reasoning. Other
similarities include the attention paid to carrying out assignments, and the attention
paid to differences between student teachers’ in learning mathematics. However, the
two series differ in their approach to student teachers learning to teach. The structure
of Reken-wiskundedidactiek follows the mathematical content of the primary school
curriculum. For example, the first book about whole numbers, starts with a chapter
about the history and the properties of our number system, followed by a chapter
about the teaching-learning trajectory of counting and number sense. The structure
of the series Rekenen-wiskunde in de praktijk is built up along themes and big ideas
of practice. For example, the first book of this series starts with an orientation on
teaching practice in kindergarten followed by a chapter with a self-assessment to let
student teachers figure out their knowledge of meaningful concepts.

In addition to these book series, there are also two books that focus on one part
of the curriculum. Rekenen met Hele Getallen op de Basisschool (Veltman & Van
den Heuvel-Panhuizen, 2010/2015), is a teacher education version of the teaching-
learning trajectory for calculation with whole numbers developed in the TAL project
(Van den Heuvel-Panhuizen, 2008). The book describes learning trajectories and
intermediate attainment targets, and provides examples of activities for student teach-
ers selected from primary mathematics textbooks. All eight chapters of the book start
with a practical activity at the student teachers’ own level followed by reflections.
Then, each chapter discusses the relevant learning trajectory in detail, including
examples of activities described in primarymathematics textbooks. In between, there
are didactical tasks and ideas for student teachers’ activities in school practice. In
summary, it can be said that this book is in the first place a book about the didactics
of whole numbers.

18This book series consists of the following publications: (Van den Bergh, Van den Brom-Snijders,
Hutten, & Van Zanten, 2005/2012; Van den Brom-Snijders, Van den Bergh, Hutten, & Van Zan-
ten, 2007/2014; Van Zanten, Van den Bergh, Van den Brom-Snijders, & Hutten, 2006/2008/2014;
Hutten, Van den Bergh, Van den Brom-Snijders, & Van Zanten, 2010/2014).
19This book series consists of the following publications: (Oonk, Keijzer, Lit, & Barth, 2013; Oonk
et al., 2011/2015; Oonk, Keijzer, Lit, & Figueiredo, 2016).
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Rekenen+Wiskunde Uitgelegd (Ale & Van Schaik, 2011/2014) explains the pri-
mary mathematics subject matter at the level of the student teachers. These explana-
tions are exemplifiedwith contexts andmodels (e.g., bar, ratio table and number line).
The text contains tips for student teachers, for example the suggestion to use special
strategies for operations and examples for activities with students. In summary, it can
be said that this book may be characterised as a book to strengthen student teachers’
mathematical literacy before taking the Knowledge Base Test.

Although it might seem that these latter two booksmean a breakwith the approach
in which the development of mathematical proficiency and didactical proficiency are
integrated, in practice it does not work out in this way. Teacher education institutions
that use one of these books combine themwith the book series mentioned previously.

8.10 Perspective: Searching for a Balance

Looking back over the past decades, we can observe a continuous search of in the
field for a well-balanced way to interconnect the didactical education of student
teachers and their development of mathematical literacy. That was—and is—not an
easy enterprise. It occurredmore than once that student teachers’ mathematical profi-
ciency was judged insufficient. As a consequence, many teacher educators struggled
to adapt the curricula in the sense that less time could be spend on the didactical
development of the student teachers in favour of more time for supporting student
teachers’ preparation for nationwide obliged tests.

Actually, two external forces influenced the development of curricula for primary
schoolmathematics teacher education simultaneously. On the one hand, qualitymon-
itoring focused on the full curriculum in primary teacher education and did not signal
the need for investments in the mathematics curriculum. On the other hand, concerns
about primary student teachers’ mathematics proficiency, also elicited by the TIMSS
and PISA reports showing that mathematics results in the Netherlands went down in
comparison to other countries, gave reason for introducing nationwide tests, namely
two entrances tests (the Mathematical Literacy Test in 1992 and the Wiscat Test in
2006) and a third-year (the Knowledge Base Test in 2013). These nationwide tests
did influence the mathematics curriculum in a sense that more focus was put on stu-
dent teachers’ development of mathematical literacy and less on their development
of didactical proficiency. Teacher education institutions now offer a relatively large
number of hours for preparing student teachers for theKnowledgeBase Test (Keijzer,
2015b). Nevertheless, there are still big differences between curricula, which could
be caused, in combination with the effects of the external forces, by the freedom that
teacher education institutions have to organise their own curriculum.

Although teacher educators are concerned about the previously sketched situ-
ation, the majority keeps searching for new possibilities to maintain and increase
the achievements of student teachers, especially their competence to integrate their
mathematical and didactical knowledge.
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First, the ELWIeR group of primary mathematics teacher educators have
focussed their practice-based research on improving mathematics teacher education.
Questions addressed in this group include:

– What study load do primary teacher education institutions reserve for mathematics and
how does this develop over time? (Keijzer, 2015b)

– How could horizontal content knowledge be included in primary mathematics teacher
education? (Duman, 2015)

– How can high performers in mathematics be adequately supported in primary teacher
education? (Kool & Keijzer, 2015)

– What are characteristics of low performers in mathematics in primary teacher education?
(Keijzer & Boersma, 2017)

– Howcan strategies for connecting subjectmatter knowledge and didactics be schematised?
(Keijzer & De Goeij, 2014; Keijzer, 2013).

Second, researchers on primary school mathematics teacher education presented
a new approach of integrating theory and practice, called ‘enriching practical knowl-
edge’,20 aswell as away to assess and describe this knowledge in a systematicmanner
(Oonk, Verloop, & Gravemeijer, 2015). By analysing and discussing real teaching
practice and describing their own reflections on that practice, student teachers show
they are using theoretical ideas and terminology of mathematics and of teaching
mathematics in a meaningful manner. In this way, practical knowledge can develop
in ‘theory-enriched practical knowledge’. This approach is less or more recognisable
in the current two mainly used book series for primary school mathematics teacher
education.

Last but not least, there is an increasing interest in problem-oriented education in
Dutch primary education (PlatformOnderwijs 2032, 2016) as well in primary school
mathematics teacher education. In linewith this, the study groupWiskunde voorMor-
gen (Mathematics for tomorrow) (Gravemeijer, 2015) consisting of twenty experts
in the area of mathematics teaching from primary to higher vocational education, is
searching for an answer to the question how to adapt mathematics teaching to prepare
the present generation of students for tomorrow’s society. The discussions about the
development of 21st century skills in this group may also influence the goals, the
content and the instructional formats of primary mathematics teacher education, not
least because of the changing role of computers as an extension of human possibil-
ities, and the increasing role of mathematics in other sciences. The latter argument
reminds us of Freudenthal’s statement that mathematics (in the future—Freudenthal
was talking about the year 2000) should not be taught as a separate subject, but as

20The word knowledge in practical knowledge is used as an overarching, inclusive concept that
summarises a variety of cognitions from conscious and well-balanced opinions to subconscious and
unreflected intuitions (Verloop, Van Driel, & Meijer, 2001). Mathematical knowledge for teaching
(Ball, Thames, & Phelps, 2008) is considered as the core of practical knowledge for mathematics
teaching.
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a part of integrated education (Freudenthal, 1976). It requires an adapted view on
learning to teach mathematics! We like to accept this challenge.
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Chapter 9
Secondary School Mathematics Teacher
Education in the Netherlands

Joke Daemen, Ton Konings and Theo van den Bogaart

Abstract In this chapter, we discuss the education of secondary school mathematics
teachers in the Netherlands. There are different routes for qualifying as a secondary
school mathematics teacher. These routes target different student teacher popula-
tions, ranging from those who have just graduated from high school to those who
have already pursued a career outside education or working teachers who want to
qualify for teaching in higher grades. After discussing the complex structure this
leads to, we focus on the aspects that these different routes have in common. We
point out typical characteristics of Dutch school mathematics and discuss the aims
and challenges in teacher education that result from this. We give examples of differ-
ent approaches used in Dutch teacher education, which we link to a particular model
for designing vocational and professional learning environments. We end the chapter
with a reflection on the current situation.

9.1 The Dutch Educational System

As a start of this chapter we first give an overview of the Dutch educational system.
For the sake of clarity, we will focus on the main stream of the system and not go into
all exceptions. In other words, we will describe how education is organised for 90%
of the Dutch students. For example, education for students with special needs will
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be left out. After describing the system, we will discuss the different forms of initial
teacher education and the statutory framework of required teacher competences that
they take as a basis. We end this first section about the Dutch educational system
with a discussion of continuous professional development for teachers.

9.1.1 The School System

Figure 9.1 shows how theDutch educational system is organised.By law, education in
theNetherlands is compulsory up to the age of eighteen. Primary education lasts eight
years from the age of four to twelve. Mother tongue and elementary mathematics are
the core subjects. At the end of primary school all students have to take a test; mostly
the so-called ‘Cito Test’1 is used for this. Based on the students’ test score and the
opinion of the teacher the students are allocated to a particular level of secondary
education.Consequently, at the endof primary school the track of students’ secondary

Fig. 9.1 The Dutch school system

1The Cito End of Primary School Test is developed by Cito, which is the Netherlands national
institute for educational measurement.
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education is largely determined. The Dutch educational system can therefore be
labelled as ‘early tracking’—a fact sometimes criticised for its negative consequences
on students with a low socio-economic background (OECD, 2007; Onderwijsraad,
2010).

Secondary education is divided in several tracks:

– VMBO: Pre-vocational secondary education, which contains in itself four tracks
ranging from practical tot more theoretical, continuing in MBO, intermediate
vocational education and training

– HAVO: General secondary education, which qualifies for higher professional edu-
cation (HBO, also called ‘universities of applied sciences’) where students can
study for primary school teacher and second-degree mathematics teacher, who are
qualified for VMBO and the first years of HAVO and VWO

– VWO: Pre-university secondary education, which qualifies for studying at a uni-
versity where students can study for first-degree mathematics teacher, who are
qualified for VMBO and all grades of HAVO and VWO.

After finishing one of these tracks, it is possible to proceed to a higher track. For
example, after finishing VMBO, a student can go to HAVO.

Within each track students can choose different directions. All tracks start with
the so-called ‘basic education’, where a broad range of obligatory subjects is offered,
includingmathematics. For example,when studying at aVMBOschool, a student can
select one of four profiles: Technology, Care andWelfare, Economics, orAgriculture.
In MBO, for which VMBO prepares, mathematics is in general no longer a separate
subject, although in recent years government policy has ledMBOschools to introduce
courses in basic arithmetic.

In HAVO and VWO students have to choose a profile in year four. Here, the
profiles are: Culture and Society, Economics and Society, Nature and Health, or
Nature and Technology. In VWOmathematics is obligatory in all profiles. In HAVO
and VWO, mathematics is distinguished in four kinds of mathematics, ranging from
more applied mathematics to more formal and abstract mathematics (see Table 9.1).

At the end of VMBO, HAVO and VWO, there is a national examination in math-
ematics. The content of the examination is prescribed by the Dutch government. As
a result, the curriculum is largely fixed and teachers are largely limited in the top-
ics they teach (Webbink et al., 2009; Snoek, 2011). In contrast with the prescribed

Table 9.1 Mathematics in upper HAVO and VWO

Kind of mathematics Content

Mathematics A Applied analysis in economics and health contexts, statistics

Mathematics B Formal analysis, analysis applied in technical and scientific contexts,
analytic geometry

Mathematics C (VWO only) Topics aimed at liberal arts, e.g., logic, or symmetry and
perspective in art

Mathematics D (complementary to B) Euclidean geometry, more analysis, choice topics
about applications in technical and scientific contexts
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content, the teachers are free to make their own choice regarding the didactics they
use.

9.1.2 Secondary School Teacher Education

There are several routes to obtain a qualification to teach mathematics. Although
in most countries teacher education involves a study at university level (Deinum,
Maandag, Hofman, & Buitink, 2005), in the Netherlands it is also possible to follow
a study at an HBO school. This HBO route to become a mathematics teacher is
currently by far the most popular route (source www.stamos.nl) (see Table 9.2).

The main difference between the university route and the HBO route are:

– Admission to a HBO school is less strict than to a university; students from lower
secondary education tracks can enrol in a HBO school but not in a university

– The route via university provides amuch stronger grounding in formalmathematics
– Universities have a separate curriculum formathematics and didactics, while HBO
schools have an integrated curriculum of mathematics and didactics.

9.1.2.1 Secondary School Teacher Education at a HBO School

There are twelve HBO schools in the Netherlands that provide mathematics teacher
education. They offer a four-year bachelor’s programme leading to a second-degree
qualification. Although the HBO schools were initially meant for students coming
directly from secondary school, the current student population is highly heteroge-
neous: about 65% (an estimation based on personal communication with staff from
several institutions) consist of students between 25 and 65 years oldwhohave decided
to make a career move. These older students often already have a job as mathematics
teacher. A Dutch law allows them to do this as long as they obtain their qualification
within a certain amount of time. The competences acquired by these students before
they start their teacher education differ greatly. Some are already qualified for teach-
ing a particular secondary school subject or for teaching primary education, others

Table 9.2 Total number of
students in types of secondary
school teacher education in
2014

Type of secondary school teacher
education

Number of students

HBO teacher education for
second-degree teachers

2,456

HBO teacher education for first-degree
teachers

322

University teacher education for
first-degree teachers

40

http://www.stamos.nl
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have a financial or technological background, while there are also students who have
not yet done anything related to mathematics or teaching.

The regular (full-time) bachelor’s programme atHBO is intended for studentswho
have just completed secondary education. They start with this programme at about
the age of seventeen. The older students follow a part-time programme, enabling
them to combine their study with a job and family life. The adjective ‘part-time’
is a bit misleading however. The programme has roughly the same content as the
full-time programme and it also lasts four years.

Six of the twelve HBO schools also offer a master’s programme for obtaining a
first-grade teacher qualification. To be admitted to this programme, two conditions
must be fulfilled: one must already have a second-degree qualification and one must
work as a teacher in secondary education. This means that the master’s programme
provides a promotion opportunity for second-degree teachers.

9.1.2.2 Secondary School Teacher Education at a University

Only a small part of the Dutch secondary school mathematics teachers is educated at
one of the nine research universities that offer teacher education. Here, three routes
are possible.

– Traditionally, teacher education at a university is a post-master’s course. Having
obtained a master’s degree in mathematics or in a related subject, a student has to
follow a one-year programme to become a teacher with a first-degree qualification.
This route is strongly consecutive: at the start of the post-master’s course, a student
is already fluent in mathematics.

– Doing the Master’s of Science Education and Communication is another option
that is offered at five universities. This two-year programme entails, besides math-
ematical subject knowledge, also theoretical insights and practical skills in both
formal and informal educational practices. In this master’s course, mathematics is
put in a broader societal perspective, relevant to secondary education and to the
public at large. Themaster’s course prepares for a first-degree teacher qualification
as well as for a career in communication or research and development.

– By following an education minor as part of the Bachelor’s of Mathematics, one
can obtain a second-degree teacher qualification. The minor takes up to half a year
of the bachelor’s study, which lasts three years.

The latter two routes have only existed since 2011. The main reason for these
additional routes is the shortage of qualified teachers in secondary education.

9.1.2.3 Quality Assurance in Teacher Education

Institutions for teacher education have autonomy in designing their curriculum
(Snoek, 2011). Therefore, quality assurance is organised through an accreditation
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system. The accreditation takes place every six years. There is no formal govern-
mental regulation for ensuring the quality of teacher educators, who almost all have
at least an appropriate master’s degree. Also, there is a voluntary professional regis-
ter of teacher educators, which is maintained by VELON, the Dutch Association for
Teacher Educators.

9.1.3 Continuous Professional Development

The types of teacher education described in the previous section can be seen as the
starting point for the teacher’s professional career. After students have completed
the teacher education programme they are fully qualified to teach. Although it is
without doubt that a teacher at the start of his or her career as a teacher still has
a lot to learn, currently there is no formal policy in the Netherlands, like in other
countries (see Deinum et al., 2005), for an induction phase. Nevertheless, life-long
learning skills are an important perspective in the curriculum. Therefore, institutions
for teacher education tend to focus more and more on ‘on the job’ education of
in-service teachers.

Education in the Netherlands is qualified as good, but compared to other countries
the performance of Dutch students in secondary education has started to go a little
backwards (SLO, 2015). Since the teacher largely determines the quality of educa-
tion, the government is taking steps to improve the quality of teachers (Snoek, 2011).
The school, as an employer, has the duty to maintain the quality of teachers and give
them the opportunity to professionalise continuously. Therefore, schools maintain
competence dossiers for every teacher. The Inspection of Education has the task to
check the quality of schools and report to the government.

All qualified teachers in the Netherlands have to join the national teacher register.
Until August 2017 this was a voluntary registration. Currently, by law, teachers have
to participate in professional development activities throughout their working life.
They have to spend 40 h of professional development each year. For mathematics
teachers, ten of these hours are labelled as ‘involvingmathematics’. TheNederlandse
Vereniging van Wiskundeleraren (NVvW; Dutch association of mathematics teach-
ers) and universities provide professional development courses for teachers in order
to meet the future requirements for registration in the register of teachers.

Another governmental measure is that teachers can acquire a grant to pursue a
bachelor’s or master’s degree in education, or even a PhD degree. One reason for
this measure is the growing shortage of highly qualified teachers. Another reason is
that it gives teachers further career possibilities.
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9.2 Aims of Teacher Education

Of course, the aim of initial teacher education is to train people to become a capable
mathematics teacher in secondary education in the Netherlands. In this section, we
will elaborate on this aim. First, we will discuss the teacher’s professional compe-
tence from a nationwide, governmental perspective. This involves the question:What
makes someone a ‘capable’ teacher? Then we will highlight the aims with respect
to the teacher’s knowledge of the didactics of mathematics, mathematical subject
knowledge, and research skills.

9.2.1 Professional Competence a Teacher Must Have

In the Wet op de Beroepen in het Onderwijs (law on professions in teaching), imple-
mented in 2013, the Dutch government describes the competences a teacher must
have. In the resulting statutory framework of competences, the term ‘competences’
comprises knowledge, skills and attitudes which are specific for the educational
domain and sustainable over a longer period of time (Van Merriënboer, Van der
Klink, & Hendriks, 2002). These competences are based on the different roles and
situations that teachers can face. The statutory framework of teacher competences is
the most important guideline for institutions for teacher education. The framework
describes the following competences (Onderwijscoöperatie, 2014):

– Interpersonal competence—the ability to create a learning climate
– Pedagogical competence—aimed at the personal development of students
– Subject knowledge and didactical competence
– Organisational competence
– Competence for collaboration with colleagues
– Competence for collaboration with the environment—e.g., parents, organisations
– Competence for reflection and personal development.

While the previously described statutory framework is meant for teachers in all
subjects, the NVvWhas presented a professional profile specifically for mathematics
teachers (Jonker, Lambriex, Van der Veen,&Wijers, 2008). Themathematics-related
competences are divided in four categories. These are shown in Table 9.3 together
with examples of standards.

Based on the statutory framework, the teacher education institutionsmust indicate
what competence level a student must have attained in order to be sufficiently apt
to start as a teacher and when a level is reached equal to a bachelor’s or master’s
degree, as prescribed by the international standards for these degrees (see Bologna
Working Group on Qualifications Frameworks, 2005). To do so, institutions have to
formulate the required ‘behavioural indicators’ for each competence. Helpful for this
are the so-called ‘knowledge bases’ that, as a result of government policy to raise
the quality of teachers (Ministry of Education, 2008), have been developed recently
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Table 9.3 Domain-specific competences for secondary school mathematics teachers (Jonker et al.,
2008)

Mathematics-related competence Example of standard

Subject knowledge A teacher oversees the internal coherence of a
mathematical subject area and links different areas

Environmental factors A teacher knows of the different mathematics related
contents and methodologies in primary education

Learning processes and didactics A teacher encourages mathematical activity in the students

Assessing, judging and evaluating A teacher can analyse students’ mistakes and provide them
with adequate feedback

specifically for domains such as general didactics and pedagogy, educational use of
ICT and mathematical subject knowledge at HBO level.

9.2.2 A Broad Range of Teacher Competences is Required

Mathematics teachers in secondary education need to be able to teach a broad range
of tracks and topics. A second-degree teacher is expected to teach in the lowest track
in VMBO up to the third year of VWO. This means that a teacher has to cope with
students with quite different levels of understanding. Figure 9.2 exemplifies how the
cognitive demands of the tasks in the first year of secondary education can differ in
different tracks.

Furthermore, a teacher must also be able to operate in MBO, intermediate voca-
tional education, which places special demands on both subject knowledge (the
application of mathematics in the students’ future profession and the workplace)
and didactics (taking into account the practice-oriented learning style of the stu-
dents) (see, e.g., Schaap, Baartman, & De Bruijn, 2012). On top of that, in the last
few years it has also become expected of mathematics teachers to teach basic arith-
metic in secondary education. This new policy of the Dutch government arose from
discontent about secondary school students’ arithmetic skills.

The mathematics teacher has to cover a broad range of topics, as the following
examples of tasks (Fig. 9.3) may illustrate. Both tasks are from a VWO examination.
The first task is from Mathematics C and the second one from Mathematics B (see
Table 9.1).

9.2.3 The Approach to Mathematics Education

The present approach to mathematics education in the Netherlands is influenced by
Realistic Mathematics Education (RME) as formulated by Freudenthal (1991). One
of the main principles of RME is that mathematics has to be relevant for students.
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T-4 Frida rents a bike at ‘Budget’.
Budget calculates the price via the formula:
number of days rental price
The rental price is in Euros.
a. Copy the chain of arrows and place the 

numbers 5 and 7.50 in the right place.
b. Calculate the rental price if you want to 

rent a bike for two days.
c. Make the reverse chain of arrows. 
d. Frida has to pay € 35, how many days 

did she rent a bike?

number of days rental price

From: Textbook Moderne Wiskunde 1B, VMBO-basis, 2008
(Modern Mathematics 1B, VMBO-basic)
(translated from Dutch by the authors)

From: Textbook Modern Mathematics 1B, VWO, 2008 (bilingual track)

Fig. 9.2 Two tasks from the first year of secondary school: one from the lowest track in VMBO
(top) and one from VWO (bottom)

According to Freudenthal, mathematics must not be approached as fixed knowledge
to be transmitted, but it should be seen as a human activity. Education in mathe-
matics should therefore give students the opportunity to, albeit guided, ‘re-invent’
mathematics by doing it. The focus should be on the process of mathematisation:
starting with experiences with contexts or problem situations, fromwhich the student
constructs relations between mathematical objects.

In the Netherlands, more than in other countries, school practice seems to be dic-
tated by textbooks (Drijvers, Van Streun, & Zwaneveld, 2012). The textbooks offer
extensive and complete materials for lessons and assessments. Teachers hardly devi-
ate from their textbook (SLO, 2015). The popular textbooks are not unambiguous
regarding RME. They incorporate many contexts, but do not use them in mathemati-
sation activities, relying instead on formal definitions and algorithms (Van Stiphout,
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From: VWO Mathematics C examination in 2013 (translated from Dutch by the authors)

From: VWO Mathematics B examination in 2015 (translated from Dutch by the authors)

Fig. 9.3 Tasks in the first-degree area: Mathematics C (top) and Mathematics B (bottom)

2013). Also, policy makers think there is too much weight on procedural knowledge.
Therefore, at the moment, there is a strong emphasis on balanced mathematical pro-
ficiency (Kilpatrick, Swafford, & Findell, 2001; cTWO, 2013) in the classroom,
incorporating procedural, conceptual and metacognitive knowledge.
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Teachers are expected to employ new technology in their lessons. This includes
the use of software as a didactical tool, but also of hardware such as graphic cal-
culators and smartboards and of modern instructional approaches like ‘flipping the
classroom’.

All the above puts heavy demands on the didactical competence of a mathemat-
ics teacher. Being an effective teacher involves much more than just lecturing and
helping students with individual problems. It involves asking good questions, engag-
ing students, connecting new and existing knowledge, formative assessments, active
learning, use of materials, and the like.

9.2.4 Mathematical Subject Knowledge for Secondary School
Teachers

9.2.4.1 Mathematical Subject Knowledge Taught at HBO Schools

In the HBO bachelor’s programme that qualifies for the second-degree level, about
30% of the curriculum is devoted to mathematics. The subject knowledge that is
required of a second-degreemathematics teacher is described in the nationally agreed
Knowledge Base (HBO-raad, 2009). Table 9.4 shows which mathematical domains
are included.

In addition to knowledge of these mathematical domains teachers should also
have proficiency in skills such as being able to communicate about mathematics, use
ICT to explore mathematical situations, being able to model real-life problems. The
rationale behind the knowledge base seems to be that a second-degree mathematics
teacher needs to be fluent in his subject at a level that surpasses the level of secondary
education. This means, in practice, a level that is a little bit more than that of VWO.
Also, a second-degree mathematics teacher needs to have knowledge of domains
that are related to the application of mathematics in various professions, such as the
domain of complex numbers that is necessary for work in electronics.

Table 9.4 Mathematical
domains in the Knowledge
Base for second-degree
mathematics teachers

Mathematical domain

Calculus Mainly real valued function in one variable

Geometry Mainly planar analytic geometry, basic
Euclidean geometry

Algebra Basic algebraic skills and elementary set
theory

Stochastics Probability theory and descriptive and
predictive statistics

Other domains Graph theory, linear optimisation and history
of mathematics
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At the moment, a revision of the Knowledge Base for mathematics is taking
place. More than was previously the case, the central question is now what kind
of mathematics a mathematics teacher needs to know. Furthermore, a distinction is
made between knowledge and skills that must be ready at hand when teaching in pre-
vocational secondary education and the first years of general secondary education,
and knowledge a teacher must have heard somewhere in his or her educational career.
This discussion is now taking place.

In the HBOmaster’s programme that qualifies for the first-degree level about 60%
of the curriculum is devoted to mathematics. This programme is also based on the
Knowledge Base (HBO-raad, 2011), but goes beyond the bachelor’s programme,
which is extended by, for example, incorporating analysis of several variables and
number theory.

9.2.4.2 Mathematical Subject Knowledge Taught at Universities

Teacher education at university implies that students first follow the regular math-
ematics curriculum and choose the teacher education track when they have already
studied mathematics for some time. This means that teachers who graduated from
university in general aremore proficient inmathematics than their HBOcounterparts.
In particular, they have a much stronger education in abstract thinking and deductive
reasoning.

Students who did not study mathematics at university, but studied a subject in
the natural sciences related to mathematics, can also enrol in the teacher education
track if they first repair their mathematical deficiencies by following a small subset
of courses from the regular mathematics curriculum. Since september 2015, seven
special courses can be offered to this category of students: Analysis, Foundations of
Mathematics, History of Mathematics, Applied Mathematics, Geometry, Algebra,
and Stochastics.

9.2.5 Research Skills for Secondary School Teachers

Since about ten years, learning to conduct educational research has become one of
the key goals of teacher education. Institutions differ in the research activities that
they demand their students do. In several institutions, the focus is on design-based
research in which the design can be a sequence of lessons or another instructional
design, which the students have to use in practice to see how it works. Sometimes
the training school of the students commissions them to do a particular design-based
research. Other institutions allow for other types of research. In any case, the research
is always aimed at the innovation of a particular practice, not at gaining scientific
knowledge. The latter is, as an exception, only included in the two-year teacher
education programmes of some universities, which have a research project lasting at
least a full semester.
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9.3 The Curricula for Secondary School Teacher Education

In this section,wewill focus on the part of the curriculum that aims at the third teacher
competence of the statutory framework of teacher competences: subject knowledge
and didactical competence. We will ignore here the subject knowledge, which is
implemented in a more traditional, academic way. In contrast, regarding the didacti-
cal competence, the teacher education institutions seem to have adopted a ‘practice-
oriented approach’ of which the key idea is to have the relevant theory closely related
to the practical concerns of students who begin to practise teaching (Hammerness,
Van Tartwijk, & Snoek, 2012; Korthagen, Kessels, Koster, Lagerwerf, & Wubbels,
2001). We will illustrate this approach by giving examples of various learning activi-
ties that Dutch institutions for teacher education have incorporated in their curricula.
To organise these examples a model (see Fig. 9.4) is used that has been developed
for designing vocational and professional learning environments (Zitter, 2010; Zitter,
Hoeve, & De Bruijn, 2016).

The vertical axis is the process dimension, referring to the two kinds of learning
processes that the learning activities want to trigger: acquisition versus participation

Fig. 9.4 Model to design vocational and professional learning environments (Zitter, 2010; Zitter,
Hoeve, & De Bruijn, 2016)
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(Sfard, 1998). The horizontal axis depicts the condition dimension: from constructed
to realistic. Here, there is also a gradual transition in the amount of control by the
curriculum and the amount of guidance a teacher educator offers.

9.3.1 Quadrant 1: Reflective Practice

Reflection on practice plays an important role in the curriculum. Reflection is the
instrument by which experiences are translated into dynamic knowledge (Korthagen
et al., 2001). There are several ways, such as showing teacher students video clips or
student work, to offer teacher students situations on which they are elicited to reflect.
In Example 1 the teacher students have to analyse questions asked of an experienced
teacher.

Example 1. Analysis of asked questions
From: Van Helden, Krabbendam, & Konings (2011)

(translated from Dutch by the authors)
Assignment: Observe an experienced teacher when he deals with a somewhat large

and difficult task. Analyse his behaviour with respect to the questions that are asked
related to learning content and problem solving.

In Example 2, the teacher educator does not only have an important role in guiding
the reflection, but also in linking mistakes to the underlying didactical theory.

Example 2. From mistakes to didactical theory behind mistakes
From: Utrecht University’s teacher education

(translated from Dutch by the authors)
Assignment: In a groupmeeting of student teachers, the teacher educator asks about

mathematicalmistakes the student teachers have observed in their students. The teacher
educator collects the mistakes on the blackboard, and in a discussion tries to structure
the different cases that are brought in. Together, a case is selected and treated in more
detail, for example, a mistake such as

2
1

2
− 1

2
= 2, therefore 2a − a = 2.

Students discuss the source of this mistake and possible interventions to remedy it.
The teacher educator links this to theory, such as the didactics of the use of variables
and operations. Then, a new cycle starts.
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9.3.2 Quadrant 2: Theoretical Concepts and Exercises

Having teacher students develop a theoretical framework is an important aspect of
teacher education. However, if this happens in isolation, students find it difficult to
make a transfer to practice. Therefore, finding applications and linking theory to
practice are important. To support theory development by teacher students and link
this to practice, it is very helpful that currently several textbooks are available that
provide the theoretical basis for the courses in didactics of mathematics. Table 9.5
gives an overview of these textbooks and their content.

In the following two slightly paraphrased examples are given from these textbooks
used in teacher education. Example 3 illustrates how in Faes et al. (2011), a textbook
meant for teacher education at the second-degree level, the teacher students become
acquainted with the different levels on which tasks can be presented to students.

Table 9.5 Textbooks for mathematics teacher education

Second-degree level First-degree level

Serie Wiskunde voor Leerlingen van 12–16,
voor de Lerarenopleiding
(Series Mathematics for Students 12–16, for
Teacher Education)
(see Dutch version at http://www.fisme.
science.uu.nl/wiki/index.php/
Samenwerkingsgroep_Lerarenopleiding_
Wiskunde_2e_graads)
− Elementary arithmetic
− Geometry
− Algebra

Handboek Wiskundedidactiek (Handbook
Didactics of Mathematics) (Drijvers et al.,
2012)
− Learning and teaching mathematics
− Variables and equations
− Functions
− The derivative
− Geometry
− Probability
− Statistics
−Modelling
− Technology in mathematics education
− Assessing mathematics
−Mathematical proficiency

Serie Leren effectief lesgeven, voor de
lerarenopleiding wiskunde (Series Learning
to teach effectively, for teacher education)
(see http://www.fisme.science.uu.nl/wiki/
index.php/Samenwerkingsgroep_
Lerarenopleiding_Wiskunde_2e_graads)
− Preparing and developing mathematics
education
− Learning of mathematics
− Problem solving and mathematics
Assessing mathematics

http://www.fisme.science.uu.nl/wiki/index.php/Samenwerkingsgroep_Lerarenopleiding_Wiskunde_2e_graads
http://www.fisme.science.uu.nl/wiki/index.php/Samenwerkingsgroep_Lerarenopleiding_Wiskunde_2e_graads
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Through the assignment to analyse a secondary school textbook the teacher students
can build experiencewith recognising thiswell-known theoretical three-phasemodel.

Example 3. From concrete to abstract
From: Faes et al. (2011) (translated from Dutch by the authors)

Subtraction from positive numbers to negative ones

CONCRETE Temperature exercise:
The initial temperature is 2°
it falls by 5°
then it is −3°

SCHEMATIC Number line:

Then:

ABSTRACT 2− 5 = −3

The phases ‘concrete-schematic-abstract’ are sometimes called the ‘context-model-
formal’ phases.
• Context phase: Students need to familiarise themselves with a context. What is the

framework? What does the action look like? Often, you must do this several times.
• Schematic/model phase: In this phase the context is gradually released […]

Assignment: Check in a secondary school textbook on the pages devoted to addition
and subtraction of negative numbers what you notice concerning the transition from
concrete to abstract.

Example 4 is taken from Drijvers et al. (2012), the handbook that is used in
teacher education for the first-degree level. Here, again the teacher students become
acquainted with theoretical didactical knowledge. This time they learn about the
concept of function, in particular about how secondary school students can express
their understanding of this concept and how this informal understanding by the
students can be understood by the teacher at a more abstract level in which several
hierarchical categories of understanding can be distinguished.
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Example 4. Concept definitions and images
From: Drijvers et al. (2012)

(translated from Dutch by the authors)
Previously it has been described that concept images of the concept of a function can

vary greatly between students. These differences became apparent when Vinner and
Dreyfus asked students what they thought a function was. The answers they obtained
fell in six categories:
a. The formal definition from the book: each x in the set A is associated to exactly

one element from the set B;
b. A dependence relation: y depends on x;
c. A rule with a certain amount of regularity;

[…]
When we look at these images a little bit closer, we can make the following

hierarchical distinction:

1. The function as an input-output process: this matches the image of a machine. The
function f with f (x) = 2x+3 for example, is considered as a local computational
process: “take twice the input x and add 3, which gives the output y.”

2. The function as covariance: […]
3. The function as object: […]

9.3.3 Quadrant 3: Practice and Work in a Safe Environment

A teacher is required to performmany tasks in a complex, hectic environment, where
it is not always feasible to reflect, to discuss mistakes and to receive feedback on
your teaching. For this reason, the teaching of teacher students is practised in a
more controlled, simulated context where there is ample opportunity for analysis
and where, moreover, the more complex task of teaching can be subdivided into
subtasks (scaffolding).

Example 5 shows an assignment in which the teacher students have to practise
whole-class teaching. The example is taken fromFaes et al. (2011), one of the courses
of the teacher education for the second-degree level. Although the setting is artificial,
it creates an opportunity to assess and discuss the didactical choices teacher students
have to make.

Example 5. Introducing new content
From: Faes et al. (2011) (translated from Dutch by the authors)

Assignment:Deliver a presentation inwhich you give an introduction to new content
for Grade 1. This introduction has to last between 10 and 15 min. Your fellow teacher
students will simulate to be your secondary school students.
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To prepare your presentation, we recommend to make all relevant tasks from the
book yourself and to analyse aspects of the content that are worthwhile to be discussed.

Also, make a written preparation of your presentation in which you address the
following questions:
• What is the goal for the students?
• Which questions are you going to ask them?
• Which instructions will you give?
• What materials do you need?

You will find an example of such a preparation in the appendix […]

Example 6 shows an assignment taken from the first-degree teacher education
programme at Utrecht University. The assignment is on curriculum design. Through
this assignment, students can become aware of their own conceptions about how a
lesson can or should be built up. Moreover, they can also experience that their peers
might have other ideas that may have equal merit. It will turn out that most of the
choices teacher studentsmake are implicit and are based on theway they have learned
the subject themselves when they were secondary school students. When they now
have to design lessons themselves, they will learn that choices have to be made.

Example 6. Curriculum Planning
From: Utrecht University’s teacher education

(translated from Dutch by the authors)
Assignment: In […] you will find a series of problems and fragments copied from

Chap. 4 of the secondary school textbook Modern Mathematics, 2 VWO, […]. The
chapter is on Pythagoras’s theorem. Only some parts of the chapter are copied and are
placed in random order.
a. Think about how you want to deal with this subject, especially in which order.

Replace the parts in the order that you prefer.You can leave problems or information
which you do not find relevant aside. If this is easier you can cut out the fragments
and put them in order.

If it is important you can add missing information in keywords. Note it does
not have to cover the complete subject. The idea is to think through the order of
teaching.

b. Discuss in pairswhere large differences in your order occur.Compare the arguments
onwhich you have based this order. Also discuss the problems you do not use.Write
down the arguments.

c. Compare your sequence with the sequence from the original book.
d. If you have time, check out […]. Discuss what current educational practice requires

from students and teachers with regard to the actual curriculum in mathematics
education.

e. Plenary exchange: differences on the basis of the arguments.
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9.3.4 Quadrant 4: Learning on the Job

Workplace learning, or immersion in the workplace curriculum (Billet, 2006), is a
major component in teacher education curricula. In the bachelor’s programme, this
amounts to approximately 25% of the programme, culminating in a trajectory where
a teacher student has sole responsibility for several classes (see Example 7). In the
university master‘s course (see Example 8), as much as 50% of the programme takes
place in secondary school (Snoek, 2011). Workplace learning is not only arranged
through the classic way of an internship. Teacher education institutions seek close
cooperation and partnerships with secondary education schools, resulting in a ten-
dency towards ‘training-for, training-with-and-in, and training-by’ the school for
secondary education (Deinum et al., 2005). This has benefit for both. From the per-
spective of teacher education, a motivating learning environment is created where
teacher students can integrate theory and practice and where there is opportunity to
become part of the professional community (Schaap et al., 2012). From the school’s
perspective, having the opportunity for professional development for their personnel
andhaving the occasion towork on innovation and research through this collaboration
with a teacher education institution, can serve as an incentive (Snoek, 2011).

Example 7. An internship at the end of the bachelor’s programme
From: Instituut Archimedes (2014) (translated from Dutch by the authors)

Assignment: For a year, deliver, on your own, 6 to 8 lessons weekly. […] As well
as delivering lessons, also perform the following tasks:
• Prepare and grade assessments
• Participate in staff meetings
• Attend report meetings
• Have contact with parents

[Depending on the context,] perform several other activities such as:

• Have contact with support staff
• Design educational products

[…]

Example 8. Scaffolding
From: Utrecht University’s teacher education

(translated from Dutch by the authors)
Assignment: Make a video recording of yourself in which you give support to one

or more secondary school students. […] Then, select two video fragments that show
interaction. Chose one fragment with interaction where you are satisfied about the way
you are giving help to your students and one where you are less satisfied about the help
you are giving.
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Regarding the next questions, try to interpret as little as possible and try to reason
as much as possible based on what you see. Name as many concepts as possible.
(a) In which respect is scaffolding used in the video fragments? What elements of

scaffolding are included? What observations make you say this?
(b) Which elements of scaffolding do you miss? What observations make you say

this?
(c) Watch each video fragment according to two principles, namely the ‘contingent

shift principle’ and the ‘principle of adaptivity in term of cognitive complexity’;
does this lead to the same results?

9.3.5 Merging All Activities: Exhibiting and Assessing
Competence

The plethora of learning activities in the different quadrants could lead to fragmented
learning.Moreover, this could be amplified by the fact that these activities are divided
over different courses in the curriculum, which are not all specific for mathematics
and are taught by different teacher educators. To prevent this, so-called ‘profession-
related tasks’, consisting of large, central and targeted assignments, play an important
role. This approach is called a ‘whole-task’model (VanMerriënboer&Kester, 2008).
Such a task could be, for example, designing a lesson or a test, or designing a lesson
series that one has to carry out. Examples 9 and 10 give an impression of such tasks.

Almost all teacher education institutions have as part of their curriculum an exten-
sive assessment in which a teacher student must present a portfolio that gives insights
into his or her competences. An interviewwith a teacher educator and a senior teacher
at the training school is often part of this assessment.

Almost always, a teacher educator attends a lesson by a teacher student as part of
the teacher education curriculum. This visit sometimes has the form of a summative
assessment, although it is frequently used to give constructive feedback and to plan
the further developmental needs of the teacher student.

Example 9. Designing a lesson series
From: Van den Bogaart & Konings (2015) (translated from Dutch by the authors)

[This text] addresses the preparation of several lessons when treating a chapter in
a secondary school textbook, but also in case one has a theme for which one wants to
produce materials on one’s own.

In a lesson series, there are a great many points of attention:
• How can I analyse the learning content and the textbook?What do my students need

to be able to do and know? How can I assess this?
• Which didactical interventions enable me to support the learning of my students?

[…]
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[During the chapter, a student teacher designs and carries out a series of lessons.
Here is part of the rubric used to grade the teacher student:]

Starting Developing Competent Exemplary

Content choice Choosing a
chapter based
on the
schedule of the
schoo

…and takes
his/her own
didactical
interest into
account

…and takes
the wishes of
the teacher
team of the
school with
respect to
special
innovations
into account

…and takes
the further
development
of his/her
competences
into account

Learning goals “Knowing
that…”:
Describes the
goals in detail
and links this
to
representative
tasks

“Knowing
why…”:
…and how the
content can
become
meaningful for
the students
[…]

“Knowing
how…”:
…also
long-term
goals are taken
into account
like problem
solving,
reasoning
abilities, […]

“Knowing
about
knowing…”:
…and study
skills are taken
into account

Example 10. ‘Master proof’
From: Utrecht University’s teacher education (translated from Dutch by the authors)

Assignment: To make your ‘Master proof’ you should develop all the materials and
the didactical instructions necessary to outline a lesson unit of subsequent lessons for
senior levels in secondary school […]. This means you should think about the aims
and objectives (learning goals), the study guide, work sheets, assessment activities or
tests, students’ surveys, suggestions for improvements and so forth. It also includes
collecting and development of appropriate software, presentations, slides, video’s, CD-
ROMs and websites. Furthermore, there needs to be a clear distinction between the
materials intended for the secondary school students and the texts meant for you and
other teachers, that should be in the teacher guidelines. Finally, the justification of
specific parts of the lesson unit needs to be made explicit, recognisable and verifiable.

The lesson unit: In agreementwith yourmentor at your secondary education training
school you will make a particular choice regarding class/grade, topic, duration, timing
etc., and you will design a lesson unit of at least 4 and at most 10 lesson hours. When
you have discussed the design of the lesson unit with your supervisors (at school and
at university) and you have made the appropriate adjustments, you will carry out your
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lessons and evaluate the unit. Using the feedback from the evaluation you will most
likely need to make a few more changes in the design.

The product: The final product of your ‘Master proof”, needs to contain the follow-
ing components: (i) a justification of your approach; (ii) the students’ materials; (iii) a
summary of the evaluation and the changes made as a consequence; (iv) a reflection
on the process of design and performance of the lesson unit; (v) the teacher guidelines
to enable you, or a colleague, to carry out the lesson unit another time.

The assessment: The criteria to assess the quality of the ‘Master proof’ are derived
from an ‘advertisement text’ in which the requirements for a school subject teacher are
described. This means that from your product it should become apparent that:
• You are able to articulate a vision on your school subject and its place in society;

[…]
• You show understanding of the construction of the subject curriculum including the

performance objectives and assessment goals; […]
• You understand how students acquire knowledge and understanding of your subject

area; […]
• You can plan, give and evaluate lessons (in authentic activities) and you are able to

translate your vision, insights and knowledge into effective and entertaining lessons:
[…]

• You dared to experiment; […]

9.4 Reflections on the Current Situation

In this section, we look at the current state of affairs in secondary school teacher
education in the Netherlands and discuss some important merits, challenges and
points for improvement. We will follow the ordering used in structuring this chapter.
First, we reflect on the educational system, then we focus on the aims of teacher
education, and finally we conclude with a reflection on the curricula for secondary
school teacher education.

9.4.1 Reflection on the Dutch Educational System

In an analysis ofmathematics education in theNetherlands, Van Streun (2001) recog-
nises as themost important development during the last century that nowadays almost
100% of students at age 16 have had mathematics education, while previously this
was the prerogative of a small elite. We see two additional merits. First, the quality
of mathematics education is high. International comparison in PISA (OECD, 2014)
shows that Dutch students do well, especially when compared to other European
countries. Second, the content of the mathematics curriculum is tailored to the needs
of different student populations. There are many levels, several profiles and several
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kinds of mathematics with their own specific subjects. This diversity in mathematics
education that is offered is more apparent than in neighbouring countries (Kaper,
2013). This broad range makes the teacher’s job both varied and challenging. Also,
it gives ample opportunities for making connections with other school subjects.

Besides these merits, we see several concerns. First, the aforementioned Pisa-
rankings show a score that gradually declines in time. This might indicate a slow
but steady decreasing level in relation to other countries. Second, although generally
the amount of mathematics lessons is comparable to that of neighbouring countries,
this is not the case for students at the highest levels of secondary education that
prepare for further study in engineering or the natural sciences—in this respect, the
Netherlands is far behind (Kaper, 2013) and this situation has worsened in the last
eight years.

Another point that is an issue of concern is that in the Netherlands, there is a
shortage of mathematics teachers. The expectation is that this shortage will increase
(Fontein, Adriaens, Den Uijl, & De Vos, 2015). In 2015, 2.2% of the full-time posi-
tions for mathematics teachers could not be filled and this will grow to 5.1% in ten
years. Moreover, a significant part of the jobs is filled by teachers who do not have
the required qualification (18.5% of the lessons in 2013, according to Fontein, De
Vos, & Vloet, 2015).

In the light of this shortage, Dutch mathematics teacher education has two
quantity-related problems (Amerom&Drijvers, 2013). First, the efficiency of teacher
education is low and decreasing. Although it is difficult to get precise measures,
roughly one third of the teacher students have not completed their study one year
after the nominal duration of teacher education. Second, a significant part of those
who graduated at a teacher education institution do not become teachers—for exam-
ple, this is the case for 34% of second-degree teachers who graduated between 1996
and 2005. Additionally, there are concerns about the very small number of teachers
graduating at universities (Commissie Deltaplan Wiskunde.NL, 2015).

A further issue to be worried about is that Dutch teachers have little time for
professional development, lesson planning and evaluation, which in part explains the
great dependency on textbooks. This is especially a problem for starting teachers,
who are often overloaded with work. This can lead to their quitting their job as a
teacher.

A striking characteristic of the Dutch system for secondary school teacher edu-
cation is that there are many routes by which one can acquire a teacher qualification,
that there are many teacher education institutions and that these institutions are quite
autonomous. This leads to a diverse population of teachers, which is enriching. How-
ever, the many routes are not enough. Schools for secondary education demand still
more flexibility. On the one hand this is a major point of concern at the moment, but
on the other hand there are limits to the flexibility that can be realised due to quality
assurance and the small scale of Dutch teacher education (Dekker, 2016). In view
of the foregoing, one can raise the question whether the large number of routes and
institutions does not lead to too much fragmentation. Especially in teacher educa-
tion at universities where student population is very low, this is a major problem.
Therefore, there is cooperation between institutions.
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Continuous professional development of teachers is an important aspect of current
educational policy. At the moment, too many teachers regard receiving their degree
as the end point of their development. The professional register of teachers aims to
change this, but we fear that it will take some time before this change in culture is
realised. Another important aspect is the high dropout rate of beginning teachers. An
extension of the duration of teacher education could remedy this. In addition, it would
also be helpful for keeping more teachers in their job if teachers had more career
possibilities. Currently, Dutch teachers can make progress through getting a higher
salary based on length of service as well as by being promoted to higher-ranked
positions at their school or at another school. However, compared to other jobs the
career perspective for teachers is still small. Also, the teaching profession has a lower
status than many other professions (Sikkes, 2015). All these circumstances damage
the attractiveness of a teaching job.

Regarding the quality of teacher education, recent accreditations of institutions
for teacher education show that mathematics teacher educators as a rule are highly
qualified and ambitious. Nevertheless, certain types of professional development for
teacher educators could be stimulated more, such as developing knowledge about
what it means to combine teacher education with having a teaching job in secondary
education. Furthermore, for secondary school teachers who are responsible for the
part of the teacher education that takes place in practice in secondary school, more
schooling is necessary, especially in the didactics of mathematics.

Aparticular concern is also the payment of teacher educators: their starting salaries
as a rule are lower than those of experienced teachers in secondary educations, which
makes it difficult to convince ‘the best teachers’ to work in teacher education.

Finally, the state of affairs concerning research in the didactics of mathematics
is worrisome (Verhoef, Drijvers, Bakker, & Konings, 2014). The same holds for
research on the education of starting mathematics teachers. Although the research
output is respectable, there is little budget for further research, although the need
of teacher education institutions for validated insights is growing. A positive
development is the creation of budgets for teachers to do a PhD study.

9.4.2 Reflection on the Aims of Dutch Secondary School
Mathematics Teacher Education

Dutch teacher education can be characterised as rather focused on the teaching pro-
fession: the learning of teacher students takes place in close contact with practice.
There is a rich tradition in cooperation between teacher education institutions and
schools for secondary education. However, this cooperation is often on education in
general and does not always has a strong link to mathematics. Although competence
in the didactics of mathematics is highly valued, it is often subordinated to gen-
eral educational competences. Recent research (Inspectie van het Onderwijs, 2015),
focussing on the second-degree level, pinpoints several strong points in the quality of
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teacher education: reaching a high level of subject knowledge and basic pedagogical
and didactical skills in teacher students and realising a high level of competence in
teaching and assessment. Nevertheless, there is also room for improvement in focus
on curriculum planning, designing assignments, applying differentiation andmaking
links to practice.

As remarked earlier,mathematics teachers in secondary school are strongly guided
by their textbooks. The limited time available to teachers for preparation and profes-
sional development leads to a conservative way of teaching, which may result in a
discrepancy between the aims of teacher education and school practice in secondary
education. Thus, there can be a gap between the demands of schools in secondary
education and the aims of the teacher education institutions. Governmental policy
therefore emphasises havingmore interchange between secondary education schools
and teacher education institutions (Dekker, 2016).

For five years, the mathematical subject knowledge for secondary school teacher
education at HBO schools has been captured in the Knowledge Base. This has led
to a levelling of the mathematical goals, yet often resulting into a rise of these goals.
However, there is discontent among teacher educators with the large amount of detail
in the Knowledge Base and putting too much focus on reproductive skills.

Since the requirements on subject knowledge needed to start with teacher educa-
tion aremore andmore relaxed, teacher students at universities are often overqualified
in this respect. Therefore, there is an ongoing discussion within universities on the
balance between academic and practical training necessary to become a teacher.
Three years ago, students in secondary school teacher education qualified the aca-
demic focus as insufficient (VSNU, 2013). However, at the moment one tends to
put more emphasis on good practice preparation, yet, after all, these students have
completed an academic study.

Currently, in secondary school teacher education there is a growing emphasis
on educational research. Yet it is not evident how to deal with research in teacher
education. This especially applies to teacher education at university, where most
students have already done extensive research activities outside education, but where
there is little opportunity to really let students experience research in an educational
context.

A final point of reflection in this section is about the vision onmathematics educa-
tion. Although, to a large degree, there is a shared vision on mathematics education
among secondary school teacher educators, in a broader societal perspective this is
not the case. As a result, this is leading to a debate on the main function of math-
ematics education, namely teaching formal skills versus skills for functional use of
mathematics, and this debate impedes curriculum development (SLO, 2015).
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9.4.3 Reflection on the Curricula for Secondary School
Teacher Education

In the curricula for secondary school teacher education one can distinguish several
types of programme components such as theoretical courses aimed at mathematics,
the didactics ofmathematics, or general educational competences, andmore practice-
oriented activities like internships and research projects. Parts of these activities take
place at the teacher education institutions and other parts in schools for secondary
education. Such a curriculum can easily lead to fragmentation. This danger is also
mentioned in accreditation reports on the teacher education institutions. Similarly,
there is also the danger of having no coherence in the curriculumbecause activities are
divided over different courses in the curriculum, taught by different teacher educators.
The profession-related tasks based on the whole-task model we discussed earlier,
could be used to obtain coherence between the theoretical courses and practice-
oriented activities. This approach should get more emphasis in the secondary school
teacher education curricula.

A further aspect where coherence falls short concerns research skills. Achieving
a research attitude in future teachers is regarded as a major goal of teacher education.
However, doing research often has an isolated place in the curriculum. Linking
research to the profession-related tasks enhances the coherence, as this linking is
happening more and more.

Another complain that is sometimes heard from secondary school teacher edu-
cators is that teacher students have a lack in applying didactical knowledge when
teaching their students. A problem is that experts in the didactics of mathematics
do not always go to the training school and observe the teacher students’ teaching
systematically. Coaching in the training school is often limited to giving practical
directions. In a one-year teaching education programme at a university, linking the-
ory and practice is difficult to realise.We see room for improvement here with respect
to the following points: (1) the role played by the didactical expert in coaching and
assessing teacher students’ learning in the training school, (2) the establishment
of communities of training school coaches and didactical experts, (3) professional
courses for training school coaches and (4) an alumni policy to make the realised
level of the teacher students more transparent.
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Chapter 10
Digital Tools in Dutch Mathematics
Education: A Dialectic Relationship

Paul Drijvers

Abstract Nowadays, digital tools for mathematics education are sophisticated and
widely available. These tools offer important opportunities, but also come with
constraints. Some tools are hard to tailor by teachers, educational designers and
researchers; their functionality has to be taken for granted. Other tools offer many
possible educational applications, which require didactical choices. In both cases,
one may experience a tension between a teacher’s didactical goals and the tool’s
affordances. From the perspective of Realistic Mathematics Education (RME), this
challenge concerns both guided reinvention and didactical phenomenology. In this
chapter, this dialectic relationship will be addressed through the description of two
particular cases of using digital tools in Dutch mathematics education: the introduc-
tion of the graphing calculator (GC), and the evolution of the online Digital Math-
ematics Environment (DME). From these two case descriptions, my conclusion is
that students need to develop new techniques for using digital tools; techniques that
interact with conceptual understanding. For teachers, it is important to be able to
tailor the digital tool to their didactical intentions. From the perspective of RME,
I conclude that its match with using digital technology is not self-evident. Guided
reinvention may be challenged by the rigid character of the tools, and the phenom-
ena that form the point of departure of the learning of mathematics may change in a
technology-rich classroom.

10.1 Introduction

Since the origin of mankind, people have developed and used tools to ease their work
and to carry out tasks. In the case of mathematical tasks, tools such as the abacus, the
ruler and the compass have been used for centuries. More recent is the development
of a fascinating category of tools, namely digital tools. This new generation of tools
includes software for algebra and calculus (e.g., computer algebra systems or CAS),
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for 2D and 3D geometry (dynamic geometry systems or DSG), and for statistics (e.g.,
the Dutch software VuStat, see Van Streun & Van de Giessen, 2007). Such powerful
tools, in which an impressive amount of mathematical expertise is incorporated,
may not only be used for ‘getting the mathematical job’ done, but may also affect
mathematics teaching and learning. In addition, dedicated tools such as applets have
been designed for specific educational purposes. These educational roles are central
in this chapter.

Among mathematicians and mathematics educators, mathematics is considered
as more than a set of algorithms which can be applied to solve routine problems. No
matter how powerful these standard solution procedures are, and howmuch of human
intelligence was needed to develop them, doing mathematics and, as a consequence
learning mathematics, also encompasses working on problems that are new to the
person involved, and requires creative problem solving and the development of new
methods and knowledge. From this perspective, much attention has been paid to
theories on bottom-up learning, (socio-) constructivism, discovery learning, inquiry-
based learning. Students should be given ample opportunity to explore, to investigate,
to conjecture, and to prove. In this way, they are expected to develop meaningful
mathematical insights, to (re)construct their mathematical knowledge and to acquire
general skills that go beyond the specific task at stake. In the theory of Realistic
Mathematics Education (RME), which is wide-spread in the Netherlands, this idea
is captured in the notion of guided reinvention (Freudenthal, 1973; Van den Heuvel-
Panhuizen & Drijvers, 2014). According to this principle, students should be given
the opportunity to experience a process similar to that by which a givenmathematical
topic was invented. While doing so, students in the meantime need guidance from
the teacher. A second RME concept, didactical phenomenology (Van den Heuvel-
Panhuizen, 2014), highlights the relation between the mathematical thought object
and the phenomenon from which it emerges. In particular, it addresses the question
how mathematical objects can help in organising and structuring real phenomena.
The challenge for the designer, of course, is to find such meaningful phenomena that
beg to be organised and structured by the targeted mathematical knowledge.

Some decades ago when digital tools for mathematics education became more
widespread and increasingly powerful, mathematics educators and researchers both
in the Netherlands and worldwide expected that this might provide levers to change
mathematics education in the direction of the aforementioned higher-order goals,
rather than focusing on the acquisition of basic paper-and-pen techniques. If digital
tools would enable students to easily and quickly investigate different situations, to
engage in experimentation without time-consuming work by hand, to outsource the
basic techniques to digital tools, would this not offer excellent opportunities for the
envisaged bottom-up and meaningful learning? Some optimism seemed appropriate.

In the educational reality of students, teachers, classrooms and schools, however,
the use of digital tools for higher-order learning goals turned out to be more complex
than foreseen. In addition to the sometimes problematic infrastructural demands
that the use of digital tools puts on every day teaching, it became clear that each
digital tool for mathematics education does not only offer opportunities, but also
comes with constraints, which may be the result of either technological limitations
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or design choices. The flexibility of digital tools, and the ways in which teachers
can customise them for their specific purposes, is often limited. As a consequence,
their use for developing higher-order skills, which seems the most subtle, is less
popular than for practicing basic skills. Overall, research results on the measurable
improvement of learning are only modest (Drijvers, 2016).

As a result, there is a somewhat dialectic relationship between the higher-order
goals of mathematics education, as highlighted in RME theory among others, and
the opportunities and constraints digital tools offer. Can we manage to use such tools
for learning goals that go beyond basic skills, or do they tend to push us back into an
algorithmic approach of mathematics? How can digital tools be used for bottom-up,
meaningful and realistic mathematics education? How can we optimise the design
of digital tools on the one hand, and the didactical design of ways to use them in
teaching on the other? In short, how can we deal with the tension between sometimes
rigid digital tools and flexible teaching? This is the central issue in this chapter. To
deal with this issue, I will, after a brief historical flash-back, discuss two particular
cases of using digital tools in Dutch mathematics education: the case of the handheld
graphing calculator (GC), and that of the Digital Mathematics Environment (DME).

10.2 A Brief Flash-Back

Over the past 45 years, the world-wide development of digital tools for mathematics
education and their use in practice has drastically evolved, both with respect to the
type of tools and the type of use. After some early applications of Computer Assisted
Instruction for mathematics, in the 1970s there was a major focus on programming
in Logo and BASIC, for example to make the ‘turtle’ move in a specific way (Dri-
jvers, Kieran, & Mariotti, 2010). In his book Mindstorms, Papert made a plea for
programming in so-called micro worlds, claiming that “[t]he computer presence has
catalysed the emergence of ideas” (Papert, 1980, p. 186). Programming was consid-
ered a means for enhancing students’ mathematical problem-solving abilities. The
availability of personal computers in the 1980s not only made programming activ-
ities more feasible in practice, but also led to the development and dissemination
of dedicated software for mathematics (such as computer algebra systems), and for
mathematics education (dynamic geometry systems or dedicated software, see Door-
man & Van der Kooij, 1992). General tools, such as spreadsheet software, were also
used in mathematics lessons (Sutherland & Rojano, 1993).

By the end of the 1990s, handheld technology such as GCs became widespread.
The advantage of these digital tools was not only that the use of the technology no
longer depended on the classroom infrastructure, but also that the initiative to use this
personal device lay primarily with the students: even if guidance from the teacher
was needed, in the end it was the student who decided when to use the technology,
and for what purpose. The handheld format also raised the question of the use of
digital tools in assessment and examinations.
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As Internet speed improved, after 2000 the use of small, dedicated applets inmath-
ematics teaching became more popular. Online educational use gradually replaced
work with locally installed software. In addition, digital tools allowed for commu-
nication, exchange and collaboration between students, and between students and
teachers. Video channels offering mathematical instruction became popular, lead-
ing to the ‘flipping the classroom’ paradigm. Online courses started to attract huge
numbers of participants.

Nowadays, we see a myriad of digital tools used worldwide, ranging from desk-
top PCs to laptops, tablets and smartphones. Students bring their own devices, and
broadband internet is the gateway to different types of applications. Using digital
tools in the mathematics classroom has become natural, and less prominent than it
used to be in dedicated ‘technology lessons’ in the past.

Developments in the Netherlands took place along similar lines. In the 1970s,
programming was popular, including work with flow charts and scratch cards to
execute programs written in educational programming languages such as Algol and
Ecol (Vonk & Doorman, 2000). In the 1980s, the personal computer started to make
life easier. However, schools used a diversity of brands of computers and different
operating systems. It was only after a national project called ‘NIVO’ brought some
uniformity, that using ICT in education became more common. In the 1990s, ICT
also became integrated in subject curricula. Schools were equipped with computer
labs. After 1999, GCs became mandatory for pre-university education for students
aged 15–18. With the advent of broadband internet, applets were being used more
and more, in particular those from the DME developed at Utrecht University. Over
the last decade, classrooms were equipped with interactive whiteboards, and wifi in
school allows students to access the internet through their own devices. TheGeogebra
software is quite popular, and studentsmakemore andmore use of laptops and tablets,
in some schools not just in addition to textbooks, but as a replacement. The question,
however, is how the type of use and its didactical and theoretical backgrounds have
developed over this period.

10.3 The Case of Handheld Graphing Calculators

To investigate how the dialectic relationship between the goals of mathematics edu-
cation and the opportunities and constraints of digital tools developed over time in
the Netherlands, I now describe the case of handheld GCs. I will confront the ini-
tial expectations with the developing practice and also address the specific case of
symbolic calculators. The case description closes with a short conclusion.
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10.3.1 Initial Expectations

In the mid-1990s, the GC entered the Netherlands. This happened to coincide with
a curriculum reform for pre-university mathematics for students aged 15–18, which
was carried out by the Freudenthal Institute, which was the cradle of the theory
of RME. As a consequence, the GC was seen as a means to bypass institutional
constraints and to directly equip students with a device that would support dynamic
and interactive exploration and reinvention, and this approach was integrated in the
curriculum reform process. More in particular, Drijvers and Doorman (1996, p. 425)
claimed that

[o]bservation of the students’ behaviour during the experimental lessons supports the premise
that the graphics calculator can stimulate the use of realistic contexts, the exploratory and
dynamic approach to mathematics, a more integrated view of mathematics, and a more
flexible behaviour in problem solving.

As an example of a task that invites such an exploratory approach, students were
asked to graph functions f and g defined by f (x) = a · 2x and g(x) = 2x+c for
such values of a and c that the two graphs would coincide. The students knew that
the two graphs could be derived from the standard exponential graph with base 2
through a multiplication with a factor a with respect to the x-axis, and a horizontal
translation to the left over a distance c respectively. In this way, students were offered
an experimentation space for the discovery of relationships such as 2x+c = 2x · 2c,
2c = a, or log2 a = c, depending on the level and age of the students. Speaking in
general, expressing functions in terms of other functions, in this example g(x) =
f (x + c), is a powerful means to build chain functions (Kindt, 1992a, b). More
examples can be found in Doorman, Drijvers and Kindt (1994, 1996).

If exploration using GCs is part of teaching, it should of course also be assessed.
Figure 10.1 shows part of an assignment of the national examination for the schools
that piloted the new curriculum in 1999. One question was to find the value of n in

x(t) =
(
1+ 1

n
sin(nt)

)
cos (t)

y(t) =
(
1+ 1

n
sin(nt)

)
sin (t)

so that the graph of (x(t), y(t)) is the ‘curved circle’. This task can be solved through
different combinations of reasoning and drawing on the GC.

As mentioned earlier, digital tools come with limitations. An obvious limitation
of the early GCs was the low-resolution screen and the not very sophisticated ways
to graph functions, with sometimes confusing results. Figure 10.2, for example,
shows the calculator’s inappropriate way to deal with the vertical asymptote of the
function f defined by f (x) = x2+x−1

x−1 . Indeed, students were unable to correctly
copy this graph on paper. Such limitations may challenge the teachers’ intentions of
explorative, ‘real’ mathematics. The solution we found to this was not to avoid such
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Fig. 10.1 Exploration task
in the 1999 national pilot
examination

Fig. 10.2 Early GC’s
misleading graph

constraints, but rather to exploit them by making them explicitly subject to further
investigation. In the case of the asymptotes, we invited students to try to come upwith
as many misleading graphs on the GC screen as they could think of, and, of course,
explain why the graphwasmisleading and how they found it. This approach, inspired
by Treffers’ (1987) notion of students’ own production, proved to be a fruitful one.

Of course, GCs are ‘ready-made’ devices that are hard to tailor to specific didac-
tical needs. Through task design and teaching approach, we tried to exploit the tool’s
potential for the sake of RME. In retrospective, I may say that we were somewhat



10 Digital Tools in Dutch Mathematics Education … 183

naive in our initial and optimistic expectations, as we probably neglected the depen-
dency on the task and the teaching, on top of the affordances of the digital tool. From
the developing practices during the following years, however, this became quite clear.

10.3.2 Developing Practices

Since 2001, students in the Netherlands were required to bring a GC to the national
examination inmathematics for pre-university secondary education. ‘Required’ does
not mean that nobody is allowed to take the exam without a GC; it does mean,
however, that assignments may become much harder to do without a GC, and that
the ‘risk’ of not having one, or not being able to use it appropriately, is for the
candidate. The idea behind this policy was that a curriculum in which digital tools
are recognised as important cannot be assessed in a technology-free manner, and
the handheld personal GC would be a feasible way to include this aspect in the
national written examination. Also, the national examination was expected to act as
a lever to really implement a change in teaching practice in linewith the opportunities
described in the previous section.

Initially, the GC was also allowed for national examinations in the subjects
physics, chemistry, biology and economics. However, this permissionwaswithdrawn
once the authorities became aware that students could store information (formulas,
applications, texts, even pictures) on their handheld devices, which was not intended
and might present candidates with unequal chances. At present (2016), mathematics
is the only subject for which GC use is allowed during national examinations.

How did the national examinations change since students have had a GC at their
disposal? Different countries have shown different policies to deal with technol-
ogy in central examinations (Drijvers, 2009). Compared to other countries, initially
Dutch policy was relatively far-reaching: the use of the GC was not only allowed,
but also indispensable in some assignments, and its appropriate use was credited in
some of the tasks. However, some trends need to be mentioned. First, assignments
in which the GC plays an essential role in visualising or exploring a mathematical
situation, such as the task from the pilot examination in 1999 shown in Fig. 10.1,
are quasi non-existing. Apparently, the board that sets the examination assignments
considered such tasks as too much depending on GC skills, and to a lesser extent on
the mathematical insights to be assessed. Second, the number of credit points that
students may get through the use of the GC seems to be decreasing over the years.
In this sense, the role of the GC in examinations became smaller over the years. This
may be explained by the tendency to re-value exact paper-and-pen procedures from
algebra and calculus: assignments nowadays contain phrases such as “Calculate the
exact value…” which require algebraic or analytic by-hand procedures, and do not
credit GC generated solutions. Third and final, the number of GC techniques that
are credited in examination papers became limited and standardised; in fact, students
should be familiar with ways to calculate probabilities of normal and binomial distri-
butions in statistic assignments, and with ways to calculate intersection points, zeros,
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Fig. 10.3 Standard GC procedures to find intersection points and to calculate probability from
Dutch 2015 mathematics examinations

maxima and minima in calculus and algebra tasks. Figure 10.3 shows an example of
these two procedures, as asked for in the 2015 national examinations in mathematics
in the Netherlands. The left screen shows the calculation of a probability for a nor-
mal distribution, and the right one the approximation of a solution of the equation
2 · cos(2t) = cos(t).

Since GCs became mandatory in mathematics examinations, textbook series of
course also included references to these devices. Again, the type of tasks and theways
to use the GCwere not as oriented towards exploration, visualisation and reinvention
as the exemplary student materials in the curriculum development project had been.
Rather, the textbooks focus on the previously mentioned GC procedures for statistics
and calculus. As a consequence, teachers also make sure that their students master
this small repertoire of standard techniques, rather than exploiting the didactical
opportunities of the GC in their lessons.

In short, teaching and assessment practice in Dutch upper secondary mathematics
education with respect to the integration of the GC did not have the effect that was
hoped for. Compared to the ideas expressed earlier, the role of the GC remained lim-
ited to some specific techniques,which students also apply in easy cases. For example,
students may use an intersect procedure to solve an equation like 2x + 3 = 7. On
the one hand, this may endanger the maintenance of paper-and-pen skills. On the
other hand, this is what technology nowadays offers. The main reasons for this lim-
ited use probably lie in the developing opinion in the field of mathematics teachers,
educators and mathematicians. On the one hand, innovative and technology-oriented
people soon started to consider the GC as ‘old school’ technology, compared to more
advanced devices such as tablets, laptops and smartphones. On the other hand, more
conservative voices in the field expressed their concern about students’ paper-and-
pencil techniques and stress the need to put aside the GC (and other digital tools) to
make students master these basic skills. In this way, the GC became tangled between
ICT-oriented and back-to-basics protagonists.
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10.3.3 Additional Symbolics

In the meantime, symbolic calculators (SCs), i.e., handheld devices that also offer
computer algebra on top ofGC features, received international attention.Many teach-
ers, educators and researchers were fascinated by the immense mathematical and
symbolic power embedded in such small, handheld devices. Still, it was unclear
what the consequences of this technological development should be for secondary
mathematics education.

In the Netherlands, the use of symbolic calculators in secondary education was
investigated in the PhD. study by Drijvers (2003). The study shows both the potential
of computer algebra in mathematics education and its constraints. As was the case
for the GC, the somewhat rigid character of computer algebra environments may
hinder students’ expressiveness and teachers’ creativity. In the case of computer
algebra, the strict syntax for algebraic commands turned out to be one of the most
important obstacles. Again, similar to the GC, an interesting didactical approach
to deal with these constraints was to explicitly address them and to take computer
algebra as an expert system which is subject to the students’ investigations: How
does the device get its answers? How to explain differences with what would be
expected? In this way, obstacles may be turned into opportunities (Drijvers, 2002).
For the case of algebraic equivalence, this approach is elaborated in more detail by
Kieran and Drijvers (2006).

The SC had a limited impact on teaching practice in the Netherlands. The reasons
are to a certain extent similar to those in the case of the GC: as paper-and-pencil
algebraic skills are highly valued, equipping students with computer algebra does not
seem the right thing to do. Therefore, SCs were banned from national examinations.
Also, the limitations of computer algebra and the difficulty to use it were not in the
SC’s favour. The argument that symbolic calculation tools might free students from
calculational drudgery and open horizons for modelling, application, investigation,
and reinvention was, once more, not highly valued.

The reason to mention symbolic calculators here in spite of their limited impact
is that international research on their use did lead to fruitful theoretical perspectives,
which may be applied to the use of digital tools in general. A core point is the bi-
directional relationship between tools and their users, in which students’ thinking is
on the one hand shaped by the digital tool, and on the other hand shapes the way the
tool functions (Hoyles & Noss, 2003). This is reflected in the notion of instrumental
genesis, the co-emergence of techniques for using digital tools and the mathematical
insights involved (Artigue, 2002; Trouche, 2004; Trouche & Drijvers, 2010).

10.3.4 Conclusions on the Graphing Calculator Case

The case of the introduction of the GC in Dutch mathematics education first shows
the initial enthusiasm, reflected in the design and use of innovative tasks that exploit
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the technology’s potential for exploration and reinvention. Next, I describe the imple-
mentation in both examination and teaching practice,which is to a lesser extent driven
by a guided-reinvention view onmathematics, and comes down to equipping students
with a limited repertoire of standard techniques for using the GC; techniques which
are of course of practical value. This development may be caused by the limited and
rigid character of the GC, in combination with public opinion in the Netherlands
shifting towards paper-and-pencil basic skills.

Even if the didactical policy of turning constraints into opportunities was in some
cases a fruitful one, it became clear that the digital tool’s limitations may hinder the
creative design of open and engaging tasks. An important criterion for digital tools in
mathematics education, therefore, is their expressive power for students, so that they
enable students to explore and express mathematical ideas in accessible and natural
ways.

10.4 The Case of the Digital Mathematics Environment

As a second case reflecting the dialectic relationship between the goals of mathemat-
ics education and the opportunities and constraints of digital tools, I now consider
the development of the DME. The DME is an online environment for mathematics
activities developed by Utrecht University’s Freudenthal Institute. I will first briefly
sketch theDME’s technological development.Next, design choiceswill be discussed,
as well as the role of the teacher, which was the topic of adjacent research. The case
description closes with a conclusion.

10.4.1 Technological Development

In the late 1990s, the DME (https://www.numworx.nl/en/log-in/) started as an ini-
tiative by Peter Boon, who was a mathematics teacher at the time, and an expert in
programming. His initial idea was to design Java applets that were available online
and that would facilitate students’ exploration of mathematical objects and concepts.
In collaboration with colleagues at the Freudenthal Institute, applets were designed
for several topics, such as 3D geometry (Kindt &Boon, 2001), algebra (Boon, 2004),
and on the intuitive notion of functions as chains of operations (Boon & Drijvers,
2006). As these applets were field-tested and soon became popular in schools, and as
their number was growing over the years, a content management system was needed
to organise the content collection, as well as a player to deliver this content. In addi-
tion to programming applets, the architecture of the environment as a whole became
a focus.

One of the powerful features of digital tools in general is the option to keep track
of student progress, either to inform students and teachers, or to provide automated
feedback, or to score student work. For this reason, a learning management system

https://www.numworx.nl/en/log-in/
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was embedded in the DME, which on the one hand provides students with feedback
on their work and on the other hand offers overviews of students’ progress to their
teachers.

Initially, a core activitywhile designing theDMEwas the programming of applets.
Gradually, the difference between programming on the one hand, and designing
the tasks and activities for students that come with the available applications on
the other hand, grew bigger. For this reason, the DME authoring environment was
developed. It allows educational designers, such as teachers, educators or text book
authors, to design activity sequences for students without engaging in programming
the applets that form the basis of these activities. In the authoring environment,
authors adapt existing online modules or design new ones, using existing applets and
basic tools such as graphing and equation editing facilities as building blocks. Knowl-
edge of the underlying programming language is not required; rather, an intuitive
and mathematical interface makes the digital design accessible to a wide audience
(Fig. 10.4).

Fig. 10.4 The DME authoring environment
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Nowadays, the DME includes a player, a content management system, a learning
management system and an authoring environment. It has moved to html5, provides
advanced features for assessment and adaptivity, has a computer algebra engine
available, and hand writing recognition.

10.4.2 Design Choices

Even if the DME’s design did not follow a fixed road map scheduled in advance, its
development has always been guided by a set of (sometimes implicit) design princi-
ples. Boon (2009) describes how his points of departure were to make the software
flexible and customisable, and to always keep in mind other possible educational
applications of a designed piece of software. As a consequence, the DME had a
modular character, in which the basic building blocks, the applets, can be re-used
and adapted to the specific didactical goals at stake. In this way, the DME became a
rich and flexible environment for mathematical activity.

As the DME was developed within Utrecht University’s Freudenthal Institute, it
is not surprising that the theoretical foundation of its design is rooted in the the-
ory of RME. This theory is reflected in DME characteristics in several ways. With
respect to students, many DME applets and activities offer them room for expressing
their mathematical ideas, exploring mathematical situations, and reinventing mathe-
matical properties. Also, according to the notion of didactical phenomenology, it is
central to engage students in situations that invite the development of mathematical
thinking in a natural and mathematically sound way. And finally, students should be
productive in the DME activities rather than reproductive. As a consequence of the
dedicated design of applets and student activity, instrumental genesis is expected to
take place in a more natural way than in the case of more general and less flexible
tools, such as the GC.

With respect to teachers, the DME also has some features that can be related to
the RME theory. Due to its flexible character, and the availability of the authoring
environment and the applet collection as building blocks, the DME offers teachers
the opportunity to engage in design, to be productive themselves, and to acquire
ownership of their teaching and teachingmaterials. This ownership is not self-evident
in the Netherlands, where teachers usually rely strongly on the regular mathematics
textbook series, rather than designing their own materials and lessons. As such, the
DME is a less ready-made digital tool than GCs or computer algebra environments,
for example.

As the DME is used by a wide variety of users, the RME points of departure
do not guarantee educational products (i.e., online modules) that reflect the RME
theory. In fact, from the early years on, some applets on practicing solving linear
equations became popular, whereas the RME approach in these applications is not
very prominent. If the DME starts to ‘live’ in the mathematics education community,
full control will of course be out of the hands of the software architects.
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Fig. 10.5 Stepwise arrow chain (left) and collapsed arrow chains (right), from (Drijvers, Boon,
Doorman, Bokhove, & Tacoma, 2013)

The development of the DME did not only include technological design, but was
part of an iterative process of designing, field-testing, and improving, that is typical
for educational design. The development of the DME has always had a strong link to
research projects, which in most cases had a cyclic design-based research character.
Studies that rely on DME affordances, but also informed its further development, are
manifold (e.g., Jupri, Drijvers, & Van den Heuvel-Panhuizen, 2016). Let us briefly
consider some examples.

As an example of a study that both made use of the DME and informs its devel-
opment, Doorman, Drijvers, Gravemeijer, Boon, and Reed (2012) describe how a
teaching sequence on functional thinking using an applet called “AlgebraArrows” led
students to develop a structural view on function. Based on the notion of emergent
modelling (Gravemeijer, 1999), the teaching sequence integrated both paper-and-
pen and digital work. As an illustration, Fig. 10.5 shows how student may ‘collapse’
chains of operations into functional objects.

As a second example, Bokhove and Drijvers (2012a, b) investigated feedback
design in DME modules for 17- and 18-year-old students on equation solving. Dif-
ferent types of feedback and feedback conditions were compared (see Fig. 10.6). As
an overall conclusion, feedback timing and fading seemed crucial for its effects. In
an effect study usingmultilevel models, the feedback-rich intervention indeed turned
out to be effective (Bokhove & Drijvers, 2012b). In another study, however, on 13-
and 14-year-old students solving linear and quadratic equations in the DME, the
intervention was not successful (Drijvers, Doorman, Kirschner, Hoogveld, & Boon,
2014). Apparently, the success of such interventions is not straightforward. The role
of the teacher might be a crucial factor here, which is why I consider it in the next
section.

In short, the design of the DME is strongly influenced by RME principles and by
the interaction between design and adjacent educational research. It is these factors
that helped the DME to develop into a rich and flexible environment for mathematics
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Fig. 10.6 Stepwise feedback including hints (Bokhove & Drijvers, 2012a)

education in the way it did, and to reduce the tension between rigid digital tools on
the one hand, and flexible didactical approaches on the other.

10.4.3 Role for the Teacher

In addition to the different levels of design in the DME, including programming
applets and global environment features, and designing student activities, a third
level is of course crucial: the use of the DME in teaching. This includes (1) preparing
lessons, in some cases through the adaptation of existing activities to the teaching
purpose and target group involved, (2) delivering lessons according to these plans, and
(3) dealing with unexpected events while teaching, either from the digital technology
or from student behaviour. As for other digital tools, the exploitation of the potential
of the DME is not straightforward to teachers. Therefore, research has been carried
out at the Freudenthal Institute to investigate the professional development needed
by teachers to fully benefit from the opportunities the DME offers.

As a theoretical lens in this research, the notion of instrumental orchestration
(Trouche, 2004) is used. An instrumental orchestration is defined as “the teacher’s
intentional and systematic organisation and use of the various artefacts available
in a—in this case computerised—learning environment in a given mathematical
task situation, in order to guide students’ instrumental genesis” (Drijvers et al.,
2010, p. 214–215). Three levels are distinguished: the didactical configuration, the
exploitation mode and the didactical performance. A study on three teachers using
the “Algebra Arrows” applet shows that teachers have their preferences for specific
types of orchestrations, and that these preferences relate to their views on mathe-
matics education (Drijvers et al., 2010; Drijvers, Godino, Font, & Trouche, 2013).
A study with twelve mid-adopting teachers using different applets within the DME
documents the extension of the teachers’ repertoire of orchestrations as a character-
istic of their professional development (Drijvers, Tacoma, Besamusca, Doorman, &
Boon, 2013).
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From the RME perspective of guided reinvention, the DME is challenging. On the
one hand, many DME activities are designed to provide means for exploration and
reinvention to students. On the other hand, we notice a tendency in teachers, who
often are novices in teaching with digital tools and are themselves in the process
of instrumental genesis, to step back as soon as students interact with digital tools,
and to fall back on ‘old’ teaching strategies such as teacher-driven explanations. As
ICT may be a new and complicating element in the didactical configuration, this
may hinder the teachers’ flexible attitude that is needed to appropriately support
the students’ process of reinvention. To be confident, to identify opportunities and
constraints of the digital activities, and to adapt teaching experience and skills to the
technology-rich classroom, is a challenge for teachers. Professional development can
play an important role in helping teachers to also engage in RME-based teaching in
a digital setting.

10.4.4 Conclusion on the Digital Mathematics Environment
Case

The case of the DME shows that software design can be more closely related to a
theoretical view on the teaching and learning of mathematics than is the case for
the GC. Also, the iterative design is underpinned by research, and the interplay
between design and research is known to be a powerful one (e.g., see Bakker &
Van Eerde, 2015). The fact that educational designers, software designers, teachers
and researchers work together guarantees close-to-practice solutions that are also
theoretically grounded. This way of working may reduce the tension between a
teacher’s didactical goals and the software’s affordances. As a result, much of the
DME content offers room for students to explore and to construct, to be productive,
and as such may facilitate a guided reinvention approach to mathematics education.

To bridge the gap between task design and software design, that is so manifest in
the case of theGC, theDMEauthoring environment empowers teachers to adapt tasks
and applications, and to design new ones. This improves the teachers’ ownership of
their teachingmaterials, which we consider a good thing. In themeantime, we should
acknowledge that it is demanding for a mathematics teacher to (re-)design materials
in the DME, not only for reasons of time, but also because of the didactical insights
and creativity needed. It is here that the need for professional development comes
into play. Professional development activities complement the collaboration between
designers, teachers and educators mentioned above.

What we do learn from the DME case, finally, is that software for mathematics
education should be designed for different educational applications, and should be
flexible and customisable. As Boon (2009, p. 10) phrases it, we should design soft-
ware as “a collection of reusable components and packages”. In this way, activities
addressing new phenomena may be easily created based on existing activities.
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10.5 Conclusion

In the introduction of this chapter, I mentioned the dialectic relationship between
the higher-order goals of mathematics education, and the opportunities and con-
straints digital tools offer. Indeed, as Hoyles and Noss write: “Tools matter: they
stand between the user and the phenomenon to be modelled, and shape activity
structures” (Hoyles & Noss, 2003, p. 341). The two cases described in this chapter
help us to further specify this dialectic relationship for students and for teachers.

For students, using digital tools for mathematics in addition to paper and pen may
lead to new opportunities and constraints. New techniques for using the tool for a
type of task need to be developed, and each technique affects the concept image as
it emerges in the students’ minds. The interaction between technical mastery and
conceptual understanding is a subtle one. Whereas a mismatch between the two
may hinder learning, a natural fit between technique and the mathematics at stake
may foster mathematical understanding. Whereas the constraints, such as syntactical
demands, may frustrate students, room for explorationmay foster engagement in rich
explorative and productive activities.

The challenge for teachers, therefore, is to exploit the opportunities and to deal
with the constraints. Teachers may experience some tension between their didactical
aims and goals, and what can really be done in the digital environment. Two levels
of educational design come into play: the design of tasks and student activities on
the one hand, and the customisation or design of the software on the other. In many
cases, the latter type of design is too time-consuming or too difficult to be within
the teachers’ scope. Therefore, an important criterion for educational software is
the option for teachers to tailor it to their didactical intensions, taking into account
instrumental genesis and the subtle relationship between tool use and mathematical
thinking. What counts, after all, is not the digital tool itself, but the way it is part
of a didactical approach, including tasks, activities, discussions and assessment. To
oversee the role of digital tools in this spectrum is not trivial for many teachers;
professional development may be useful here.

From the perspective of RME, I conclude that the match between RME and using
digital technology is not self-evident.With respect to guided reinvention, the integra-
tion of digital technology in mathematics teaching may initially be a complicating
factor to teachers, which challenges established teaching techniques. To remain in
control, teachers may react to this by focusing on traditional forms of teaching such
as demonstrations and explanations. This may lead to more guidance and less room
for reinvention. As a consequence, the guided reinvention approach may need extra
attention when technology enters the classroom.

As for didactical phenomenology, I conclude that the phenomena may change in a
technology-rich classroom. The digital environment itself may be a meaningful phe-
nomenon to the student. The GC’s limitations with respect to graphing asymptotes
turned out to be an inspiring phenomenon to elicit algebraic thinking. In the mean-
time, using digital tools may also create some distance to the phenomena at stake.
For example, drawing a circle with a physical compass does require a circular hand
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movement; in a dynamic geometry software environment, this physical connection
between the hand movement and the geometrical object is less evident, as students
just have to click on a centre point and a point at the radius distance. It is important
that the phenomena explored in a digital environment can be presented and manip-
ulated in a natural way, which corresponds with representations and manipulations
in the physical world. Interesting ongoing research investigates how such embodied
experiences can be simulated on digital devices (Abrahamson, Shayan, Bakker, &
Van der Schaaf, 2016).

Altogether, the challenge for teachers, designers, educators, and researchers is
to create digital tools that are flexible and customisable, that offer room for explo-
ration to students, and that teachers can easily adapt to their specific didactical goals.
Teaching with technology should not default to traditional techniques because of the
increasing complexity of the teaching environment, and attention needs to be paid to
presenting phenomena in natural andmeaningfulways. These are not straightforward
challenges; in the meantime, progress has been made and a joint effort is needed to
make the integration of digital tools in mathematics education a widespread success.
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Chapter 11
Ensuring Usability—Reflections
on a Dutch Mathematics Reform Project
for Students Aged 12–16

Kees Hoogland

Change in education is easy to propose, hard to implement, and
extraordinarily difficult to sustain.
Hargreaves and Fink (2006, p. 1)

Abstract In this chapter, I look back at the implementation of W12-16, a major
reform of mathematics education in the lower grades of general secondary education
and pre-vocational secondary education in the Netherlands including all students
aged 12–16. The nationwide implementation of W12-16 started in 1990 and envi-
sioned a major change in what and how mathematics was taught and learned. The
content was broadened from algebra and geometry to algebra, geometry and mea-
surement, numeracy, and data processing and statistics. The learning trajectories and
the instruction theory were based on the ideas of Realistic Mathematics Education
(RME): the primary processes used in the classroom were to be guided re-invention
and problem solving. ‘Ensuring usability’ in the title of this chapter refers to the
aim of the content being useful and understandable for all students, but also to the
involvement of all relevant stakeholders in the implementation project, including
teachers, students, parents, editors, curriculum and assessment developers, teacher
educators, publishers, media and policy makers. Finally, I reflect on the current state
of affairs more than 20 years after the nationwide introduction. The main questions
to be asked are: Have the goals been reached? Was the implementation successful?
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11.1 Vision

11.1.1 Radical Innovation

The W12-161 reform of mathematics education in the lower grades of general sec-
ondary education and pre-vocational secondary education in the 1980s and 1990swas
widely seen as a radical innovation in mathematics education. The reform affected
all elements of mathematics education in secondary schools: a new and broader cur-
riculum, alternative ways to approach students, fostering students to develop more
and other skills such as problem solving, and using different assessments such as
contextual and open-ended problems.

The realisation of such a change was only possible with broad support. In the
1980s and 1990s, there was in the Netherlands a great deal of agreement between
teachers, mathematics education developers from the Freudenthal Institute (the for-
mer IOWO2), mathematics educators from the SLO,3 the staff of APS,4 and teacher
educators from various teacher education institutions.

Through and with these leading institutions, publishers, other teacher educators,
teacher unions, educational support agencies, researchers and developers in mathe-
matics education worked together to change mathematics education. Furthermore,
a great many of these people were involved in writing mathematics textbooks. This
broad collaboration also made it possible to offer in-service training on a large scale.
And last but not least, there was support, although limited, to this mathematics edu-
cation reform movement from professional mathematicians; because of the eminent
stature of Hans Freudenthal.

This broad engagement was also visible in the two teams that were the driving
forces in the development and implementation of W12-16 reform. First, the W12-16
team started as a development and design team with members of various institutions.
Later, this team was transformed into the SW12-165 team, a broad implementation
team with dozens of teachers and mathematics educators as team members, working
together to implement the new curriculum.

1Wiskunde 12-16 (Mathematics 12-16).
2Instituut voor de Ontwikkeling van het Wiskunde Onderwijs (Institute for the Development of
Mathematics Education).
3Netherlands Institute for Curriculum Development.
4National Centre for School Improvement.
5Samenwerkingsgroep Wiskunde 12-16 (Collaborative working group Mathematics 12-16).
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11.1.2 Pioneering

For most members of the W12-16 team, innovation in mathematics education began
well before their participation in the team. Some members were looking for opportu-
nities to innovate teaching methods, while others had an affinity with at-risk students
and acted from a background of special needs education. Other team members were
mostly interested in the professional development and empowering of mathemat-
ics teachers. Yet some other members were working on promoting mathematics for
girls. All team members had one thing in common; they were looking for a setting in
which all students could be inspired by mathematics, motivated by the content and
the approach, and be actively engaged in mathematics. The team members were the
pioneers who advanced the initial developments.

In some sense, the work of theW12-16 teamwas an extension of the mathematics
education development that was already taking place in the Netherlands. At the same
time, W12-16 was the focal point through which all the initiatives came together and
were moulded in a coherent vision. From the beginning of the 1970s, at the IOWO
people had beenworking on the design of RealisticMathematics Education (RME) in
which students are given practical problems fromeveryday life or other sourceswhich
can be experienced as real by the students. By solving these problems and reflecting
on themwith mathematics teachers, students construct their own set of mathematical
concepts. In RME this is called ‘guided reinvention’ (Gravemeijer, 1994, 2004). In
the first instance, the IOWO staff focused on primary education and primary school
teacher education. As a follow up, a number of booklets on particular mathematical
domains were developed for lower secondary education using the same approach.
The influence of this material was limited because the content of the examinations
changed little, if at all. Because of this, teachers and mathematics textbook authors
were hesitant to use these booklets in their teaching programmes.

More substantial for the development of the W12-16 team’s vision was a
change in upper levels of secondary education resulting from the HEWET6 and
HAWEX7 projects, which introduced a new mathematics curriculum. The influence
of the HEWET project (1978–1985) was the most substantial because it concerned,
amongst other things, the development and introduction of a new curriculum for pre-
university secondary education. Mathematics A was intended for students pursuing
a university education in the social sciences; the contents were considered a kind
of ‘forerunner’ of mathematical literacy (De Lange, 1987; OECD, 1999), including
functional mathematics, contextual problem solving, and statistics and probabil-
ity. Mathematics B was meant for students pursuing a university education in the
natural sciences and contained more technical mathematics with a strong calculus

6HerverkavelingWiskunde I en II (Re-allotmentMathematics I and II); theHEWETproject resulted
in Mathematics A and Mathematics B, a new mathematics curriculum for the upper grades (age
16–18) of VWO, the pre-university level of secondary education.
7HAVOWiskunde Experimenten (HAVO mathematics experiments); the HAWEX project resulted
in Mathematics A and Mathematics B for the upper grades of HAVO, general secondary education
which qualifies for higher professional education.
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approach, including functions, graphs, and advanced calculus. In addition to the cal-
culus domain, the curriculum of Mathematics B included a domain of geometry in
which mathematical proofs were reintroduced in the curriculum as an example of
the scientific mathematical method.

At this stage, the developments in primary education had also progressed. In the
beginning of the 1990s about 40% of primary schools used a RME textbook series
(Van den Heuvel-Panhuizen, 2010).

So, for both age ranges, the 4–12-year-old students and the 16–18-year-old stu-
dents, the mathematics curricula were changing. One last gap remained: lower gen-
eral and pre-vocational secondary education. In 1987 a committee was set up to
review the mathematics curriculum for students in these tracks in the age range of
12–16 years.

11.1.3 The Educational and Societal Context of the Change

The experiences with a new curriculum in primary education and the upper levels of
general secondary education fed the vision of the W12-16 team. However, it was not
only developments in mathematics education which left their mark. While the W12-
16 teamwas at work, more general educational changes took place and influenced the
development of the team’s vision. The direction and size of the educational change
in W12-16 were determined to a large extent by the social context in which the plans
were developed. In the 1980s and 1990s, in which the W12-16 and SW12-16 teams
operated, there were several developments that affected classroom norms, educa-
tional policies and curriculum development. In this particular time frame, there was
a focus on equity in education: schools organised students in heterogeneous classes;
there was a general need for basic education for all, and consequently for mathe-
matics for all; and last, but certainly not least, to prevent the waste of enormous
human potential in mathematics, there was a focus on the mathematical competence
of girls. In the Netherlands, compared with surrounding countries, girls were under-
represented in technology sectors of education andwere underachieving in secondary
education because many were choosing tracks with either no mathematics or easier
mathematics.

Moreover, at that time, there was also increasingly widespread use of calculators
in society, though this had not yet spread to schools. And, to complete the picture of
this period of time, it is important to note that it was prior to the common use of the
internet and the World Wide Web.

11.1.4 The Dutch School System

The Dutch school system has a few very distinct features, which also influenced the
implementation of the new program (Fig. 11.1).
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Fig. 11.1 The Dutch school system

Early streaming and a focus on vocational education from a very young age are
typical features of the Dutch school system. Although it is internationally recognised
that such early streaming limits the full developmental potential of the student pop-
ulation (OECD, 2013), discussing a change to this has been a no-go area in Dutch
politics for decades. Reducing streaming is seen in Dutch politics as aiming at egal-
itarian and uniform education, instead of aiming at differentiated education, that is,
dealing with differences in the classroom. The strong and early focus on vocational
education could indeed have a benefit for many students, as they can engage in
meaningful and job-related activities early in their education. But at the same time,
it can lead to a sharp divide between vocational and general education. Preventing
a two-tiered education structure, and in the long run a two-tiered society, was and
is a serious educational challenge for the Netherlands. The aim of the W12-16 team
was to make mathematics education meaningful for all students, regardless of level,
gender, ethnicity or educational stream, preferably in an inclusive educational setting.



202 K. Hoogland

To summarise, developments in both mathematics education and society worked
together to create a vision of mathematics for all students that targeted usability and
inspiring and meaningful mathematical content.

11.2 The Content of the New Curriculum

11.2.1 RME—The Vision in a Nutshell

The Dutch approach to mathematics education has become known as ‘Realistic
Mathematics Education’ (Gravemeijer & Terwel, 2000; Van den Heuvel-Panhuizen,
2000; Van den Heuvel-Panhuizen & Drijvers, 2014). The present form of RME has
beenmostly determined by Freudenthal’s (1973) view onmathematics education and
was further developed by the staff of the Freudenthal Institute at Utrecht University.
Freudenthal viewed mathematics as an educational task that, for it to be of human
value, should be connected to reality, remain within children’s experience, and be
relevant to society. In his view, teaching mathematics is much more than a transfer of
knowledge to be absorbed by students. Freudenthal stressed the idea of learning and
doing mathematics as a human activity; it should give students a guided opportunity
to re-invent mathematics by actively doing it. This means that the focal point of
mathematics education should not be on mathematics as a closed system but on the
activity and on the process of mathematisation (Freudenthal, 1980).

11.2.2 RME in Secondary Education

In secondary education, mathematical concepts become more sophisticated and for-
mal than in primary education. In many mathematics curricula all over the world
(Hodgen, Pepper, Sturman, & Ruddock, 2010a, b) formal mathematics is used as
both a goal and an organisational principle for the curriculum, as reflected in names
of content domains such as ‘algebra’ and ‘geometry’, which are basically domain
names from the early eighteenth century. In such mathematics curricula, contextual
problems are most commonly used for knowledge application tasks at the end of
a learning sequence, as a kind of add on. In the mathematics curriculum for lower
secondary education, which is the curriculum being reflected on in this chapter, a
broader scope was chosen in this reform: ‘algebra’ became ‘functions, formulas
and relations’; ‘geometry’ became ‘geometry and measurement’; ‘numeracy’ was
added with a focus on mathematical literacy; and ‘data processing and statistics’
were addressed. In this way, the organisational principle for the curriculum shifted
towards a categorisation in topics related to theworld around us and howmathematics
plays a role in it, rather than a categorisation of mathematical concepts.
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In RME, context problems also have another function than mere application of
mathematics. They are typically used in the exploration and development of new
mathematical concepts. In RME, context problems play a role in each new learn-
ing trajectory directly from the beginning. Learning trajectories start with the pre-
sentation of a problematic situation that is experientially real to the student. The
contextual problems are intended to foster a re-invention process that enables stu-
dents to become involved in problem solving and modelling processes and at the
same time provides them with grips for more formal mathematics. In RME, context
problems can function as anchoring points for the students to re-invent mathematics
themselves. Moreover, guided re-invention and emergent modelling offer ways to
address the generally perceived dilemma of how to bridge the gap between informal
knowledge and formal mathematics.

11.2.3 Examples from Final Examinations

Curriculum changes are documented in formal curricula describing the skills and
knowledge goals to be taught. For teachers, however, the most common way to
communicate curriculum changes is through discussing exemplary tasks in final
examinations and comparing ‘old’ tasks with ‘new’ tasks.

The tasks in Figs. 11.2 and 11.3 are from a mathematics final examination for
pre-vocational secondary education. Figure 11.2 shows tasks from the examination
in 1995, which are typical for the old curriculum, while the tasks in Fig. 11.3 are
from the examination in 1996, which are typical for the new curriculum.

The differences between the final examination tasks of the old and the new cur-
riculum are striking. First, the starting point for tasks in the final examination of 1996
involves problems from the real world, sometimes accompanied by pictures or dia-
grams. This approach contrasts considerably with the formal mathematical approach
used previously. Second, the focus has shifted from making calculations at a for-
mal level to mathematical problem solving and modelling. Third, multiple choice
questions are abandoned to keep students in a problem-solving mind-set as long as
possible. And finally, the mathematics is personalised in the sense that actual people
are introduced in the tasks and, while the question may not be directly relatable to
the life experience of the students, it is at least imaginable for them.

11.2.4 The Change in Content

Until 1992 the mathematics curriculum for lower secondary education was based on
the classical mathematical subjects of geometry and algebra. In algebra, the focus
was on algebraic manipulation, solving equations, and linear and quadratic functions
and their graphs. In the domain of geometry, the focus was on plane geometry—mea-
suring angles, Pythagoras, and goniometry—with a strong calculational approach. In
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For which values of x the following inequality is true?

–3 (x – 2) ≥ 3 (x + 3)

a.  x ≤  – 2
2
1

b.  x ≤  – 2 

c.  x ≤  – 
6
5

d.  x ≤  – 
2
1

e.  x ≥  – 2 

f.  x ≥  –
2
1

For which values of x the following inequality is true?

2
1

x2 – 5x – 3 < 0 

a.   {x | 5 – 19 < x < 5 + 19 }  

b.  { x | 5 – 31 < x < 5 + 31 } 

c.  { x | –5 – 31 < x < –5 + 31 } 

d.  { x | x < 5 – 19 ∨ x > 5 + 19 } 

e.  { x | x < 5 – 31 ∨ x > 5 + 31 } 

f.  { x | x < – 5 – 31 ∨ x > - 5 + 31  }

Fig. 11.2 Tasks from the final examination Wiskunde VMBO GT 1995 (pre-vocational secondary
education, upper track, mathematics, old curriculum) (translated from Dutch by the author)

the new programme, there was a new approach to algebra and geometry and the scope
was broadened to include numeracy and statistics. Furthermore, a new curriculum
domain of integrated mathematical activities was added. The aim of this addition
was for the students to intertwine the different content strands in a more thematic
approach.

11.2.4.1 A New Approach to Algebra

The focus within the algebra domain shifted from algebraic and computational
manipulation to reasoning on the relationships between variables and to flexibil-
ity in switching between four different types of representations of relations: graphs,
tables, verbal representations of situations, and formulas. Other characteristics of the
new algebra approach were:
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Postal rates in Europe

Sending a leƩer to someone outside the Netherlands is more expensive than within the 
Netherlands. A list of PTT rates for 1996 for posƟng within Europe are given below.

Europe  
(incl. Turkey)

LeƩers, Cards, Printed maƩer and small parcels

LeƩers Cards Printed maƩer and small parcels
by air by air by air by train, boat or car

0 – 20 gram
20 – 50 gram
50 – 100 gram
100 – 250 gram
250 – 500 gram
500 – 1 kg
1 – 2 kg

f 1,-
f 1,80
f 2,60
f 5,- 
f 9,50
f 16,- 
f 24,-

f 1,- f 1,-
f 1,60
f 2,40
f 3,75
f 7,- 
f 9,50
f 15,-

f 1,-
f 1,45
f 2,10
f 3,35
f 5,75
f 9,- 
f 12,-

A part of the graph for the PTT rates for sending le ers by air in Europe is drawn in the 
appendix to quesƟons 15, 16, 17 and 18.
You can have your leƩers, folders and suchlike sent by the company QSV.
The graph for the QSV rates is also drawn in the appendix. 
QSV charges the same rate for printed maƩer as for leƩers.

a. Draw the part of the graph for sending leƩers from 0 to 100 g by PTT.

b. Karel wants to send a leƩer weighing 130 g to Glasgow.
What is the difference in price between sending the leƩer by PTT and sending it by QSV?

c. Lianne wants to send 5 folders (printed maƩer) to the same address in Ankara (by airmail). 
She can send them all in separate envelopes. She can also send two or more in one envelope. 
Furthermore, Lia can choose between PTT and QSV. One folder weighs 50 g. One envelope 
weighs 10 g.
Work out the cheapest way to send them. Write down your calculaƟons.

Fig. 11.3 Tasks from the final examination Wiskunde VMBO GT 1996 (pre-vocational secondary
education, upper track, mathematics, new curriculum) (translated from Dutch by the author)

– Dealing with diversity in the representations of relationships between variables
instead of focusing on uniformity and formal conventions.

– More focus on interpretation of representations of relationships between variables
than on manipulation skills.

– More focus on broad techniques like translating representations of relationships
between variables than on specialised techniques like using the abc-formula to
solve quadratic equations.

– More focus on a concentric curriculumwith a gradual increase in complexity rather
than a linear curriculum.

With these characteristics, the new curriculum aimed for a more usable, practical,
and meaningful interpretation of algebra. For mathematics in the upper levels of
secondary education, it was also seen as possible to design a usable calculus course
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based on these fundamental principles; see, for example, Gravemeijer and Doorman
(1999).

11.2.4.2 A New Approach to Geometry

In the curriculum domain of geometry, the focus shifted away from two-dimensional
plane geometry with a strong calculational approach and towards two- and three-
dimensional geometry with a focus on so-called ‘vision geometry’. This geometry is
based on seeing, observing, perceiving, representing and explaining spatial objects
and spatial phenomena, in which the idea of vision lines and intervisibility plays an
important role.

Geometry for primary schools was developed from similar ideas prevalent in the
1970s and 1980s, primarily informed by everyday geometric phenomena. Emphasis
was placed on ‘observing, doing, thinking and seeing’, as Goffree (1977) described
the Wiskobas8 geometry concept.

The approach could almost be seen as a revival of the ideas of Tatiana Ehrenfest-
Afanassjewa, who in 1931 published her Übungensammlung zu einer Geometrische
Propädeuse (Ehrenfest-Afanassjewa, 1931) in which she substantiated her thinking
on geometry based on everyday experiences from a practical point of view. This
book contains a collection of problems of an entirely different nature than the tradi-
tional geometrical problems around constructions and proofs. It presents everyday
geometrical phenomena that could be examined by 10-year-olds or even younger.
Accordingly, these problems served to stimulate children’s intuitive notions of geo-
metric concepts and properties, thus forming a basis for later formal and systematic
work. In the secondary education geometry programme these ideas were continued.
So, geometry moved to more usable geometry, with strong links to the surrounding
reality. For an extensive overview of specific developments in geometry education,
see De Moor (1999).

11.2.4.3 Numeracy as a New Domain for Secondary Education

Within the domain of numeracy, the focus in W12-16 was on mathematical literacy.
The functional use of basic mathematics (and arithmetic) was the key element. The
aim was to contribute to the basic competences of students in dealing with every-
day quantitative situations or problems. The focus on operations with numbers was
reduced, and the focus on problem solving and modelling was intensified. This was
an approach comparable with the approaches in PISA (mathematical literacy), and
PIAAC9 (numeracy) which were also emerging in the 1990s. Because of the prac-
tical nature of the numeracy envisioned, much attention was given to proportional
reasoning, estimating, dealing with measurement, and using the calculator.

8Wiskunde op de Basisschool (Mathematics in Primary School).
9Programme for the International Assessment of Adult Competencies.
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11.2.4.4 Data Handling and Statistics

The new curriculum domain of data handling and statistics was focused on the ways
data are collected, visualised and used in decision making. It could be considered as
a kind of forerunner of dealing with big data. It contrasted with what was common in
this domain. In the pre-1996 programme some statistics was mentioned, again with
a strong calculational approach, for example, how to calculate mean and standard
deviation and how to produce histograms and circle diagrams.

In the W12-16 curriculum, data handling and statistics was treated as mature and
serious components of the mathematics curriculum. They were seen as increasingly
important aspects of the mathematical competences students needed in their future
lives. The focus also shifted from calculations to interpreting the large amount of
numbers and data that is ubiquitous and used more and more in communication
between people. This vision was quite new and innovative at the time of the change.
As mentioned before, in those years, internet or the World Wide Web were not yet
available.

11.2.5 From Mathematics for a Few to Mathematics for All

One of the pedagogical and didactical consequences of seeing mathematics as a
human activity (Freudenthal, 1973, 1980)was that it allowed the engagement of every
student, not only those who are cognitively privileged or with a strong inclination to
mathematical thinking. Mathematics as a human activity is an inclusive philosophy
for teaching, learning and doing mathematics.

In W12-16, there was a strong belief that every student should be involved in
mathematics on an appropriate level. The change from more specialised topics to
a broader view of mathematics and the shift to a broader range of topics was one
way of making mathematics more accessible to all. This broader scope followed
a worldwide tendency in mathematics education towards more usability. Whereas
until the 1970s mathematics curricula were defined as subsets of the mathematical
knowledge structure, from the 1980s on there was a global focus on the usability
of mathematics, and therefore curriculum elements were sought which had visible
applications, including arithmetic, proportions, measurement, data collection and
chance. This was a fundamental change in designing curricula, because it made
aspects of the real world the basis for the categorisation scheme rather than the
logical structure of the mathematical domains (Kilpatrick, 1996; Niss, 1996).
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11.3 Implementation

11.3.1 Implementation Theories

From literature on educational change there are many theories and studies that
detail the conditions necessary to make curriculum change successful (Hargreaves,
Lieberman, Fullan, & Hopkins, 1998). Nevertheless, there are also many reports that
describe curriculum changes that have failed. In a most cynical way, implementation
of new curricula worldwide is sometimes summarised as the ‘fiasco pattern’. If the
target group for the curriculum change is set at 100%, after a few years these out-
comes are most common: 70% have heard of it, 50% actually saw it, 30% have read
it and have the documentation, 15% use it, 5% use it according to the intention of
the change and 0–3% use it and attain the intended effect on the learners.

However, the particular changes in mathematics education described in this
chapter have reached maturity over a period of 25 years and have proven to be quite
sustainable. The curriculum over this period did not stay completely unaltered, but it
still contains some clearly recognisable elements of the original ideas and intended
outcomes.

In the following sections this particular implementation of mathematics education
is analysed from the perspective of theories of educational change. The purpose of this
analysis is to reconstructwhich elements of the implementation strategyhad apositive
effect on the sustainability of the change. A reference is made to the frameworks of
Miles and Fullan, which undeniably already in the 1990s inspired and influenced
the implementation of the new mathematics curriculum. Fullan (1982), Fullan and
Stiegelbauer (1991), and Miles, Ekholm and Vandenberghe (1987) identified three
broad phases in the change process: initiation, implementation and continuation.
Most of these ideas even go back to the writings of Pierce and Delbecq (1977) on
organisational change. The phases can be visualised as in Fig. 11.4, which is based
on the work of Miles et al. (1987).

For each phase, the relevant factors from literature are highlighted and it is shown
how these factorswere addressed in substantial change in themathematics curriculum
in the Netherlands realised through W12-16 and SW12-16.

Fig. 11.4 The three overlapping phases of the change process (based on Miles et al., 1987)
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11.3.2 Initiation Phase

According to the aforementioned frameworks of Miles and Fullan, the factors that
affect the initiation phases include:

– Existence and quality of innovations
– Access to innovations
– Advocacy from central administration
– Teacher advocacy
– External change agents.

The quality of the innovation that resulted from W12-16 was to a great extent pos-
itively influenced by the thinking power of Hans Freudenthal. His thoughts about
mathematics as an educational task (Freudenthal, 1973) influenced literally all the
mathematics educators in the Netherlands and many mathematics educators abroad
in the 1980s and 1990s. Access to the innovation for other schools was made possi-
ble through the publication of experimental lesson materials, through conducting a
large number of information meetings, and through the two major Dutch journals on
mathematics education which published monthly on aspects of the new curriculum.
The Ministry of Education supported the reform and made funds available for pilot
schools and development of experimental teaching materials. For the envisioned
change a change in the formal, legislated, curriculum was also necessary. The Min-
istry of Educationmade that possible by changing the formal curriculum and the final
examinations for pre-vocational secondary education (in the examination year 1996)
with broad support from parliament. Moreover, the Ministry of Education commis-
sioned and funded a committee to start with pilot schools. Through the work with
pilot schools a group of mathematics teachers was created that acted as advocates
for the reform. These so-called ‘advocate teachers’ also had an important role in the
in-service teacher education activities.Most pre-servicemathematics educators were
also involved in the reform movement. Important external ‘agents of change’ were
the in-service and pre-service teacher education institutions, the publishers, and the
education inspectorate, who all supported the chosen vision.

The elements of this successful initiation were planned and documented in the
W12-16 report Operatie Acceptatie10 and involved a series of activities focusing on
establishment of acceptance with all key stakeholders. At a conference in October
1989, which was attended by mathematics teachers and mathematics educators this
idea arose.Members of theW12-16 team and the largest in-service teacher education
institution APS were very much aware of the need to work carefully on creating
support for the quite radical innovation. In Table 11.1 the most important activities
of the initiation phase of W12-16 and SW12-16 are shown.

At the conference in October 1989, the first plans for an implementation strategy
were formulated. In a series of follow-up consultations and meetings with a great
number of stakeholders the contours for the implementation strategy were developed

10Operation Acceptance.
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Table 11.1 Summary of activities in the initiation phase of W12-16 and SW12-16

School year Activities by W12-16 Activities by SW12-16

1987–1988 • Start W12-16
• Three development schools
developed mathematics booklets

1988–1989 • Development of mathematics
booklets

1989–1990 • Development of mathematics
booklets

• First draft of new mathematics
curriculum

• First pilot final examinations
• Start of ‘Operation acceptance’

1990–1991 • Preliminary version of new
mathematics textbooks

• Regional information and
information meetings

• Second draft curriculum
• Second pilot final examination

• Start SW12-16
• Start at 10 new pilot schools in the
first year of secondary education

• Introduction plan
• Regional information and publicity
meetings

1991–1992 • Regional information and publicity
days

• New curriculum
• New mathematics textbooks
• Background book for teachers:
Mathematics 12–16

• Third pilot final examination
• End W12-16

• Pilot schools in the second year of
secondary education

• Regional information and publicity
days

further. This strategy was taken over by the Minister of Education as is expressed by
his statement:

I request that special attention be paid to mathematics. The activities of the Commissie
Ontwikkeling Wiskundeonderwijs11 (COW) will be completed in the first half of 1992. On
1 August of that year, recommendations for a new examination syllabus for lower voca-
tional education (LBO) and junior general secondary education (MAVO) shall be available,
amongst other things. I intend to transform these recommendations into a definitive syllabus
as soon as possible. With this in mind, I ask you now to carry out all the preparations in
1991 and to prepare the way for introduction as far as possible in order to enable a rapid
introduction of the new examination syllabus. In order to promote a good connection, with
regard to content, between development and support, I would ask that you also set up and
carry out the above in consultation with the commission. (quoted by Kok, Meeder, Pouw, &
Staal, 1999, p. 22) (translated from Dutch by the author)

The transition of initiation to implementation was marked by the mandate that
was given by the Ministry of Education to set up a new commission. It marked the
birth of the implementation team SW12-16.

11Committee Developing Mathematics Education.
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11.3.3 Implementation Phase

Fullan and Stiegelbauer (1991) identified three major factors which affect imple-
mentation: characteristics of change, local characteristics, and external factors. As
summed up in Table 11.2, they identified different stakeholders at local, federal and
governmental levels. They also identified characterisations of change for each stake-
holder and the issues that each stakeholder should consider before committing to a
change effort or rejecting it.

Although school leaders as well as policy makers supported the implementation
ofW12-16, mathematics education was often seen as troublesomewith respect to the
attained performance levels of the students and theirmotivation.Moreover, the formal
and selective approach of the formal mathematics curricula were seen as opposite
to an education that aimed for more equity, better motivation, and providing useful
content for all students and not only for mathematically gifted students. To inform all
involved as much as possible, the envisioned change was laid out extensively in pilot
materials, new examinations and in courses for professional development of teachers.
On all levels stakeholders were informed and they were all at least benevolent to the
change.

During the implementationprocess the systematic effort to involve all stakeholders
remained one of the key elements. One of the lessons learned from earlier curricular
reforms was that forgetting one or more stakeholders will lead to major resistance,
not just from the forgotten stakeholders, but from others as well. Strengthening
ownership on all levels by involving stakeholderswas seen to be ofmajor importance.
Thereweremany stakeholderswithin this implementation, including teachers, school
leaders, ministry officials, testing agencies, teacher educators, parents, publishers,
policy makers and the media. A continuous and extensive dialogue through a series
of meetings was a crucial aspect of involving these stakeholders.

In addition, in the implementation phase a strong need was felt to create and
show good practices by ‘regular’ teachers in ‘regular’ schools. After an intensive
tour of schools the SW12-16 team and APS agreed to experimentally introduce the
programme in ten pilot schools and follow the progress with great care.

Table 11.2 Characteristics of change, local factors, and external factors

Characteristics of change Local factors External factors

• Need for change
• Clarity about goals and needs
• Complexity: the extent of
change required for those
responsible for implementation

• Quality and practicality of the
programme

• The school district
• Community Board
• Principal
• Teacher

• Government and other
agencies
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11.3.4 Continuation and Institutionalisation

Continuation of an innovation is strongly dependent on the institutionalisation of key
tenets of the innovation. Continuation depends on whether or not:

– The change is embedded/built into the structure (through policy/budget/timetable)
– The change has generated a critical mass of school leaders and teachers who are
skilled and committed to the change

– The change has established procedures for continuing assistance.

In the case of W12-16 the combination of incorporating the changes in final exam-
inations, in the major mathematics textbook series, and the incorporation in the
teacher education programmes, both for in-service teacher education and for pre-
service teacher education, was key to the implementation and the sustainability of the
change. The networks of textbook authors, mathematics educators, and test designers
overlapped heavily and made a relatively uniform interpretation of the new curricu-
lum come to blossom. According to the implementation literature mentioned before,
these kinds of complex changes in education take at least 20–30 years to come to
full crystallisation. After 25 years one can analyse whether the change has reached
the stage of institutionalisation.

The next and final section discusses what results can be seen 25 years after the
initiation of this mathematics education reform.

11.4 Reflection

11.4.1 How Sustainable Is the New Situation?

The changes in the mathematics curriculum since 1992 have been most sustainable
and successful within the pre-vocational secondary education track of the Dutch
education system. The programme has been running in this track for more than
twenty years without any problems in classrooms or debates on the content. In the
last twenty years, we can say that the students following this pre-vocational track did
moremathematicswithmore usability, with better results, andwith highermotivation
than students in any other period in the history of mass education.

As a serious indication of sustainability, the mathematics textbook series and the
final examinations still reflect the essential tenets of the original vision. Figure 11.5
shows a task from the 2015 final examination for the pre-vocational intermediate
track (VMBO-KB).

As is shown in this examination task, most characteristics of the envisioned
changes are still visible: based in reality, open-ended questions, and meaningful
problems. At the same time, however, the change is still very vulnerable. In the last
ten years, with the rise of social media, the persistent idea that children are perform-
ing poorly at mathematics and that this can be remedied with simple training and
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A baby can be breasƞed or boƩle-fed. This task is about a baby who gets boƩle-feeding.
To determine the required amount of feed per 24 hours for a baby under the age of 6 months, one 
uses a rule of thumb:
“A baby requires 150 ml boƩle-feeding per kg bodyweight.”
For example, a baby of 4 kg requires 4 × 150 = 600 ml boƩle-feeding per 24 hours.

a. AŌer a few weeks a baby weighs two Ɵmes more than at birth.
The mother says her baby requires now 2 Ɵmes more boƩle-feeding
Calculate whether the mother is right by using the rule of thumb.
Write down your calculaƟons.

b. Baby Luke weighs 3.8 kg at birth. Luke is given boƩle-feeding every 3 hours, even at night.
Calculate how much ml boƩle-feeding Luke needs a Ɵme. Write down your calculaƟons.

c. BoƩle-feeding can be made by yourself by mixing milk powder with water.
The milk powder container shows the data below.

number of level 
scoops 
+ water

3 level scoops
+ 
90 ml water

4 level scoops
+ 
120 ml water

5 level scoops
+ 
150 ml water

6 level scoops
+ 
180 ml water

quanƟty of
boƩle feeding

100 ml 135 ml 165 ml 200 ml

The milk powder container shows more informaƟon:
Content 900 grams and 1 level scoop is 4.5 grams.
If Luke is three months old, he gets five Ɵmes per day a 165 ml boƩle.
Calculate how many days a full milk powder container will last. Write down your calculaƟons.

Fig. 11.5 Exemplary task from final examination Wiskunde VMBO KB 2015 (pre-vocational
secondary education, middle track, mathematics) (translated from Dutch by the author)

rote learning is still very much alive. See Van den Heuvel-Panhuizen (2010) for a
report on this debate. In recent years, in the (social) media a framing can be wit-
nessed that the educational change in the 1990s is to blame for the alleged low level
of mathematics of today’s students. This is in spite of results provided by interna-
tional comparison studies like TIMSS, PISA and PIAAC, which consistently find the
Netherlands performing quite high. But as is common in (social) media framings of
education, assertions om low performance in mathematics are persistent and mainly
fact free. This has led to a demand for rote learning, and a ban on the use of ICT-
based mathematical tools. In the pre-vocational track of secondary education these
demands did not have much effect yet because the curriculum proved itself to be
useful for these students and their teachers support the practical and common-sense
approach to mathematics.

In the higher tracks of secondary education, however, especially on tracks leading
to university, there has been a recurring debate on the alleged low level ofmathematics
performances in the Netherlands since the late 1990s and the early 2000s, especially
in regard to procedural skills. In the debate, we see many references to a ‘backward
utopia’. It is alleged that sometime in the past all students of all ability levels were
able to execute all standardised procedural number and algebraic operations correctly
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and fluently. This backward utopia, which arguably did never exist, has influenced
the current mathematics curricula of lower and upper secondary general education
through a re-incorporation of rote learning of algebraic skills. But more importantly,
the discussion paralysed to some extent the further development of the didactical
ideas introduced in the early 1990s and made it harder for teachers and prospective
teachers to develop the skills necessary to make a more inquiry-based and guided
re-invention-based mathematics education come to full blossom.

11.4.2 The Way Forwards

We have witnessed that the type of discussion in the media as described above has
taken place in many countries over recent decades and will most likely pop up with
every new generation of teachers, educators, mathematicians, and policy makers.
If, for example, the now popular criteria of Hattie (2009, 2015) had been used to
evaluate the work of the SW12-16 team the positive findings described in this chapter
would never have been noticed. Luckily, a group of mathematics educators who had
a critical mass in the Dutch educational infrastructure believed that mathematics
education should be for all and envisioned a mathematics education that ensured
usability.

In 2016, in the Netherlands a campaign entitled Onsonderwijs203212 is being
launched for a curriculum reconsideration in the coming years. Its title reasons that
students who enter education today will enter the workforce in 2032. In this cam-
paign three major functions of education are emphasised. The Dutch philosopher and
educator Biesta (2010, 2013), amongst others, strongly advocates a renewed focus
on these functions: qualification, socialisation and subjectification. Biesta pleads for
a greater focus on subjectification as the opposite of socialisation and calls for the
uniqueness of each individual human being to be acknowledged. In the advice report
for Onsonderwijs2032 (Platform Onderwijs2032, 2016) the goals are presented in a
less philosophical way. The report emphasises the relevance of (1) development of
knowledge and skills, (2) equipment for future society, and (3) personal development.

In this perspective, RME is more than ever a relevant approach to mathematics
education and matches more general developments in education. There is a tendency
worldwide to involve all students in mathematics, and RME can offer relevant con-
tent as well as an approach that contributes to the aspiration for all students to be
involved in mathematics. RME is in that regard still one of the most widely known
instruction theories for mathematics education. The broadened scope and the focus
on mathematics as a human activity are also relevant in today’s world because of the
new focus in education on personalised learning and on students creating their own
personal learning trajectories.

In the Netherlands, most mathematics educators ignore the current superficial
framing in themedia and continue designing anddevelopingmeaningfulmathematics

12Our education 2032.
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education alongside international partners that share a vision for ensuring inspiring,
meaningful and sensible mathematics education for all students. Good practices in
RME can function as examples for the new tendencies in (mathematics) education
in the decades to come.
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Chapter 12
A Socio-Constructivist Elaboration
of Realistic Mathematics Education

Koeno Gravemeijer

Abstract This chapter describes a socio-constructivist elaboration of Realistic
Mathematics Education (RME) that emerged from my collaboration with Paul Cobb
and Erna Yackel. It is argued that RME and socio-constructivism are compatible and
complement each other. Socio-constructivism points to the critical role of the class-
room culture, while RME offers a theory on supporting students in (re-)constructing
mathematics. Furthermore, the role of symbols and models is discussed, which
was considered problematic in constructivist circles, while being central in RME.
The emergent modelling design heuristic is presented as a solution to this puzzle.
Together, guided reinvention, didactical phenomenology, and emergent modelling,
are combined to delineate RME as an instructional design theory. This is comple-
mented by a discussion of pedagogical content tools as counter parts of the emergent
modelling and guided reinvention design heuristics at the level of classroom instruc-
tion. Finally, research on student learning and enactment ofRME inDutch classrooms
is discussed.

12.1 Introduction

When Freudenthal (1971) coined his adage of mathematics as a human activity, con-
crete elaborations of what that wouldmean in practice still had to beworked out. This
became one of the main tasks of the IOWO,1 the predecessor of the current Freuden-
thal Institute. In the 1980s, Treffers took stock of what had been developed up to then
and construed the Realistic Mathematics Education (RME) theory by generalising
over the characteristics the prototypical instructional sequences and local instruction
theories that were available had in common. This resulted in the publication of a

1Instituut voor de Ontwikkeling van het Wiskunde Onderwijs (Institute for the Development of
Mathematics Education).
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framework for a domain-specific instruction theory for RME (Treffers, 1987). The
RME approach did fit very well in the broader trend in the international mathematics
education community which emerged around that time. This concerned the general
recognition of the importance of students’ active constructive role in appropriating
new mathematics, and an emphasis on applicability. RME did not only share similar
starting points, it also offered a fitting theory on how to support students in construct-
ing mathematics; moreover, this was accompanied by various concrete elaborations.
In this respect RME arrived at the right time. This undoubtedly contributed to the
international interest in this approach—which in turn led to collaborative projects
in various countries. This was, however, not a one-way stream; international col-
laborations influenced RME as well. Collaborative projects in the United States, for
instance, brought researchers from the Freudenthal Institute in contact with (socio-
)constructivism, which influenced their thinking about RME to a greater or smaller
extent. Especially my ten-year collaboration with Paul Cobb, Erna Yackel and col-
leagues was marked by a mutual influence (see also Cobb, with Gravemeijer &
Yackel, 2011). This resulted in a new elaboration of RME, which we will denote as,
‘a constructivist elaboration of RME’.

This constructivist version, which emerged next to the original RME theory, will
be the theme of this chapter. We will start by looking into the compatibility of the
underlying conceptual positions of RME and socio-constructivism. This will be fol-
lowed by a discussion of the implications of the socio-constructivist collective per-
spective as elaborated by Cobb and Yackel (1996) for RME. Next, we will discuss
the apparent contrariness of the views on the role of symbols and models, and how
those positions were reconciled in the emergent modelling design heuristic. Subse-
quently we will discuss how the socio-constructivist perspective can illuminate the
complexity of enacting RME in everyday classrooms. We will complement this with
recent investigations of the state of affairs in Dutch classrooms.

12.2 Conceptual Compatibility of (Socio-)Constructivism
and Realistic Mathematics Education

In the early stages, some protagonists of RME quickly acknowledged the compati-
bility of constructivism and RME. Some, however, were more reluctant. Freudenthal
(1991) was actually very negative about constructivism. He rejected Von Glasers-
feld’s critique on the status of objective scientific knowledge by pointing out the
achievements of science. He argued that we should not focus on the philosophy of
science, but on the philosophy of education, and stated:

I cannot see any bond between mathematics instruction on the one hand and an alleged or
assumed lack of faith in objective mathematical knowledge on the other hand, whether it is
called constructivism or anything else (Freudenthal, 1991, pp. 146–147).

At the time that Freudenthal expressed this critique, there were various ideas around
on what the radical constructivist position would mean for education. Including the
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position that teachers should not interfere because of the risk of endangering the
students’ own constructive activity. Gradually, however, a more pragmatic stand-
point won out. In this process, Paul Cobb was very influential. While his theoretical
perspective evolved towards a more pragmatic stance; from radical constructivism
towards socio-constructivism. He saw great value in what Putnam (1987, cited by
Cobb, 2001) denoted ‘pragmatic realism’ (Cobb, 2001). And he contended that,
whereas radical constructivism claims that it is impossible to bridge the gap between
one’s own knowledge and some pre-given external reality, pragmatic realism ques-
tions this focus on the dichotomy between this external reality and our personal
knowledge. Instead of focusing on an unknowable pre-given external reality, we
should focus on the realities which people experience. This pragmatic realism is
clearly compatible with Freudenthal’s conception of reality, which he does not link
to some pre-existing external reality, but to one’s self-constructed experiential real-
ity: “I prefer to apply the term ‘reality’ to what at a certain stage common sense
experiences as real” (Freudenthal, 1991, p. 17).

Cobb (1994a) himself made a nice connection between the two views when point-
ing out that (socio-)constructivism is not a pedagogy. He argued that if it is true that
people always construct their own knowledge, then students will do so in every
classroom—even with direct instruction. The issue, he went on to say, is not whether
they construct, but how and what they construct. The question therefore is: What do
we want mathematics to be for the students? Cobb (1994a) concluded that a poten-
tial answer to that question was in Freudenthal’s notion of mathematics as a human
activity.

12.3 A Socio-Constructivist Perspective on Teaching
and Learning

A shared belief in the compatibility of (socio-)constructivism and RME formed the
basis for a ten-year collaboration betweenCobb cum suis andme, inwhichwe further
elaborated RME theory while working on a series of classroom design experiments.
The starting point was that RME and socio-constructivism are not only compatible,
but also complemented each other. On the one hand, socio-constructivism offers a
background theory for RME, and, more importantly, adds a collective perspective.
On the other hand, RME offers an instructional design theory that aims to support
students in constructing mathematics.

Adopting a socio-constructivist view implies a collectivist perspective on teaching
and learning, which situates the students’ activity within the classroom community,
whereas RME originally tended to a more individual, psychological, perspective,
even though the roles of interaction and collaboration between students were of
course acknowledged. Socio-constructivism offers an important addition in that it
focuses attention on the crucial role of the classroom culture in the enactment of
RME in the classroom. To analyse the situated activity of students, Cobb and Yackel
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(1996) developed an interpretative framework, denoted ‘emergent perspective’, in
which they try to coordinate a social and a psychological perspective. The former
involves the norms and practices of the classroom community. The latter focusses on
individual students’ reasoning, and concerns beliefs of students and teacher. Cobb
and Yackel (1996) discern classroom social norms, socio-mathematical norms, and
practices. The social norms describe the expected ways of acting and explaining in
a given classroom. They elucidate that the social norms are reflexively related to the
students’ and the teacher’s beliefs about their obligations, which are shaped by the
classroom’s history. Typical social norms of the traditional mathematics classroom
are that students are expected to try to come to grips with the knowledge and pro-
cedures presented by the teacher and the textbook. The teacher’s role is to explain
and clarify, and the students’ role is to try to figure out what the teacher has in mind
and act accordingly. RME asks for different social norms, which in line with Cobb
and Yackel (1996) encompass the obligations for students to come up with their own
solutions, explain and justify their solutions, to try to understand the explanations
and solutions of their peers, to ask for clarification when needed, and eventually to
challenge the ways of thinking with which they do not agree. The teacher’s role is not
to explain, but to pose tasks, and ask questions that may foster the students’ thinking,
and help them in this manner to build on their current understanding and to construe
more advanced mathematical insights.

This recognition of the need for fitting social norms has significant consequences
for puttingRME into practice. It signals the need for changing the social norms,which
in turn asks for changing the individual beliefs of the students. It also highlights that
students’ beliefs about their role and that of the teacher are formed by experience.
In traditional classrooms students are used to being rewarded for reproducing the
teacher’s reasoning and procedures, and the belief that this is what is expected from
them will not change unless they gain compelling new experiences. This takes some
conscious effort (Cobb & Yackel, 1996). To establish new social norms, the teacher
has to show that what is valued and what is rewarded has changed.

In addition to the general classroom social norms, Cobb and Yackel (1996) dis-
cern socio-mathematical norms andmathematical practices. The socio-mathematical
norms refer to what mathematics is and what it means to do mathematics in a given
classroom. For example, what counts as a mathematical problem, what counts as a
mathematical solution, and what counts as a mathematical argument. We may link
those socio-mathematical norms with the notion of ‘mathematical interest’ (Grave-
meijer &Cobb, 2013). To engage in the activity of mathematising vertically, students
will have to develop an interest in mathematical aspects of their solutions. Teachers
may cultivate mathematical interest by asking questions such as: What is the general
principle here? Why does this work? Does it always work? Can we describe it in a
more precise manner?

With mathematical practices Cobb and Yackel (1996) refer to taken-as-shared
ways of acting and reasoning, which may evolve over time. The mathematical prac-
tices are reflexively related to individual students’ mathematical conceptions. They
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speak of an established mathematical practice when certain ways of acting and rea-
soning are no longer challenged by individual students. This does not necessar-
ily mean that all student’s conceptions and actions correspond with that practice.
Mathematical practices do, however, offer a means of identifying and describing the
progress of the classroom as a whole.

The emergent perspective offers an important addition to RME in that it reveals
that a certain classroom culture has to be put in place in order to allow for guided
reinvention; an aspect that had not yet been articulated in Treffers’ (1987) theory.
Moreover, it highlights the reflexive relation between the individual’s interpretations
and constructions and the norms and practices of the classroom community.

Mark that we may look at the relation between Cobb and Yackel’s perspective
and RME theory in two ways: We may consider the emergent perspective an integral
part of a socio-constructivist take on RME, or conceive of the emergent perspec-
tive as describing a necessary requirement—as enacting RME is not possible if
the students adhere to traditional school-mathematics social norms. Whichever one
chooses, socio-constructivism offers a significant expansion of or addition to RME
theory. We may note, however, that conversely RME offers a significant addition
to socio-constructivism by offering an instruction theory for supporting students
in constructing mathematical knowledge. Further, building on both an RME and a
socio-constructivist perspective proved especially fruitful in the domain of symbols
and tools, a development we will discuss in the following.

12.4 Symbolising and Modelling

Initially there was a strong wariness among socio-constructivist scholars regarding
the use of external representations. This was supported by research in contemporary
mathematics classrooms, which had shown that students often could not make sense
of the symbolic representations introduced by the teacher (see, e.g., Cobb, 1994b).
Broadly speaking, the use of tactile models and visual representations was associated
with the transmissionmodel of teaching, inwhich tacit and visualmodelswere treated
as powerful means of supporting learning for understanding. By acting with well-
designed concrete models, students were expected to discover the mathematics that
was embedded in themodels. In relation to the latter, Cobb, Yackel, andWood (1992)
speak of a representational view. They argue that mathematics educators, who use
tactile models and visual representations in this manner, implicitly or explicitly hold
the view that learning is characterised as a process in which students construct mental
representations thatmirror themathematical features of external representations. The
problem with this approach, however, is that the meaning of external representations
is dependent on the knowledge and understanding of the interpreter. This creates the
problem, known as ‘the learning paradox’ (Bereiter, 1985), that can be captured by
the following question: How is it possible to learn the symbolisations, which you
need to come to grips with new mathematics, if you have to have mastered this new
mathematics to be able to understand those very symbolisations?
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The underlying problem, Cobb et al. (1992) argue, is that mathematics educa-
tors experience mathematics as an objective body of knowledge, which is mirrored
by the external representations they use to make the corresponding mathematics
accessible for students. This presupposes an objective body of knowledge that exists
independently of some agent. According to socio-constructivist theory, however,
knowledge has to be constructed by an actor, and cannot be separated from the
knowing individual. Thus, for those who have not yet constructed the more sophisti-
catedmathematical knowledge that has to be learned, this body ofmore sophisticated
mathematical knowledge, literally, does not exist, and thus cannot be conveyed by
external representations.

12.4.1 Emergent Modelling

However, while constructivist scholarswerewary of symbols andmodels and pointed
to the learning paradox, RME relied heavily on the use of models, model situations,
and schemata, as is indicated for instance in Treffers’ (1987) characterisation of pro-
gressive mathematisation. Consequently, the need arose to reconcile the two concep-
tions of the role of symbols and models. A beginning of an answer could be found
in Treffers’ (1987) elucidation that in the RME approach, models etcetera, rather
than being offered right away, arise from problem-solving activities. In this man-
ner, Treffers’ model characteristics (1987) pointed to a dynamic aspect that could be
explicated and elaborated as an explicit design heuristic offering a way to circumvent
the learning paradox. We should also refer to Streefland (1985) who argued that by
modelling reality you create a model of that reality—which he calls an ‘after-image’
(‘nabeeld’ in Dutch). This after image may foster reflection, which in turn may lead
to the insight that the model can be used for other problem situations. The model has
become a ‘pre-image (‘voorbeeld’ in Dutch) that is used for reasoning about other
situations (which he in later publications expands with supporting abstracting and
level raising (Streefland, 1992, 1993).

The constructivist concerns about the role of models and the associated learning
paradox are eventually addressed by the design heuristic that originated from notic-
ing a shift in the thinking of students using the empty number line (Gravemeijer,
1991). It showed that the students initially used calculations that closely matched the
situation in the contextual problem, but later on started to come up with solutions that
were based on number relations and were only indirectly connected with the context.
This implied that the number line had acquired a new meaning for the students; it
started to signify number relations. This insight led to the rationale underlying the
emergent modelling heuristic, that the learning paradox dissolves when one adopts
a more dynamic view of learning in which mathematical symbols and models are
developed in a bottom-up manner. The latter appeared to agree with Meira’s (1995)
observation that in the history of mathematics, symbols did not suddenly appear in
their full-fledged form. Instead, these symbols grew out of informal, situated, forms
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of symbolising that developed over time in a reflexive process in which symbolisa-
tions and meaning co-evolved. Following Meira (1995), we may envision a dynamic
process in which symbolisations and meaning co-evolve, and in which the ways
that symbols are used and the meanings they come to have, are seen to be mutually
constitutive. It showed that a similar pattern could be found in many prototypical
RME instructional sequences, such as Van den Brink’s (1989) design for addition
and subtraction, Streefland’s (1990) work on fractions, and the various sequences
for the written algorithms (Treffers, 1987). The idea of a dynamic process in which
symbolisations and meaning co-evolve has been elaborated in the emergent mod-
elling design heuristic. Here the label ‘emergent’ refers both to the character of the
process by which models emerge, and to the process by which these models support
the emergence of more formal mathematical conceptions.

According to the emergent-modelling design heuristic, the model first comes to
the fore as a model of the students’ situated informal strategies. In subsequent activ-
ities, the role of the model begins to change. As the students gather more experience
with similar problems, their attention may be directed to the mathematical relations
involved. In this manner, the students start to develop a network of mathematical
relations. This changes what the model signifies for the students. Instead of deriving
its meaning from activity in the context in which the problem is situated, the model
starts to derive meaning from the mathematical relations involved. Consequently,
the model becomes more a base for more formal mathematical reasoning than a way
of representing a contextual problem. In other words: the model of informal mathe-
matical activity develops into a model for more formal mathematical reasoning. We
should add that, although we speak of ‘the model’, the model we are referring to is
more an overarching conception, than one specific model. In practice, ‘the model’
in the emergent-modelling heuristic is actually shaped as a series of consecutive
sub-models that can be described as a cascade of inscriptions (Latour, 1990) or a
chain of signification (Roth & McGinn, 1998). Key here is that acting with each
new inscription signifies the earlier activity with the preceding inscriptions for the
students. Mark, however, that the series of symbolisations is invented by the instruc-
tional designer, not by the students. To adjust for this, one may try to ensure that
each new tool/symbolisation emerges as a solution to a problem that has its roots in
activity with the earlier symbolisation. In this manner, the history of working with
the earlier symbolisation may provide the imagery underlying the new tool. Whether
this is the case, may be inferred from whether or not the new symbolisation is used
flexibly by the students.

From a more global perspective, the symbolisations can be seen as various mani-
festations of some overarching model that evolves from a ‘model of’ situated activity
to a ‘model for’ more formal mathematical reasoning. In relation to this, we may
discern four different types or levels of activity (Gravemeijer, 1999):

(1) Situated activity in a task setting that is experientially real for the students
(2) Referential activity, in which models refer to activity in the task setting
(3) General activity, inwhichmodels refer to a framework ofmathematical relations
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(4) Formal mathematical reasoning which is no longer dependent on the support
of models-for mathematical activity.

These four levels of activity illustrate that the students’ understanding of models is
grounded in their understandings of paradigmatic, experientially real settings. At the
level of referential activity, the models are meaningful to the students because they
refer to situated activity in the task setting. General activity begins to emerge when
the students start to reason about the mathematical relations that are involved. In this
manner the students develop a network of mathematical relations. Consequently,
the model starts to lose its dependency on situation-specific imagery, and gradually
develops into a model that derives its meaning from the emerging framework of
mathematical relations. In this manner the model starts to function as a model for
more formal mathematical reasoning.

The transition from model-of to model-for coincides with a progression from
informal to more formal mathematical reasoning that is interwoven with the cre-
ation of some new mathematical reality—consisting of mathematical objects (Sfard,
1991) within a framework of mathematical relations. Thus, the model-of/model-for
transition is not tied to specific manifestations of the model, instead, it relates to the
student’s thinking, within which ‘model-of’ refers to an activity in a specific setting
or context, and ‘model for’ to a framework of mathematical relations. Mark that the
constitution of a framework of mathematical relations—and thus some new mathe-
matical reality—is an essential element of the emergent modelling design heuristic.
In this respect, it differs from a modelling conception in which a model of a con-
textual problem is generalised in order to function as a model for solving similar
problems in other contexts. We may add that model-of/model-for transition in the
emergent modelling design heuristic has to be understood in a metaphorical sense.
Central is the series of symbolisations or sub-models, which together constitute ‘the
model’, which may or may not be placed under one label—such as the notion of
a ruler as the overarching model in the measurement annex number-line sequence
(Stephan, Bowers, & Cobb, with Gravemeijer, 2003).

Let us briefly return to the aim of supporting students in developing a frame-
work of mathematical relations and the corresponding mathematical objects, which
is experienced as some new mathematical reality. This experienced reality corre-
sponds with the perceived body of mathematical knowledge that we identified as
the central problem when discussing the learning paradox. Thus, instead of trying to
help students to make connections with a mathematical reality that does not exists
for them; the emergent modelling approach helps students in constructing such a
mathematical reality by themselves. This focus on the constitution of mathematical
objects and a framework of mathematical relations also signifies a deviation from
Treffers’ conception of RME theory, since he tends to characterise students’ mathe-
matical development in terms of students’ development of increasingly sophisticated
solution methods (see, e.g., Treffers, 1991).
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12.5 RME in Terms of Instructional Design Heuristics

The conception of emergentmodelling as an instructional design heuristic allowed for
an alternative description ofRME theory in terms of instructional design heuristics by
combining it with guided reinvention and didactical phenomenology (Gravemeijer,
2004).

12.5.1 Emergent Modelling Heuristic

We already discussed the emergent-modelling design heuristic above, but we may
add that this heuristic has been used in design research projects on a variety of
topics, such as addition and subtraction up to 20 (Gravemeijer, Cobb, Bowers,
& Whitenack, 2000), addition and subtraction up to 100 (Stephan et al., 2003),
written algorithms for addition and subtraction (Bowers, 1995), integers (Stephan,
& Akyuz, 2012), data analysis (Gravemeijer & Cobb, 2013), algebraic functions
(Doorman, Drijvers, Gravemeijer, Boon, & Reed, 2012), calculus (Doorman, 2005),
and differential equations (Rasmussen, 1999).

12.5.2 Guided Reinvention Heuristic

When elucidating the principle of guided reinvention, Freudenthal (1973) suggested
the instructional designer should look at the history ofmathematics to see how certain
mathematical practices developed over time. The designer is advised to especially
look for potential conceptual barriers, dead ends, and breakthroughs. These may be
taken into account when designing a potential reinvention route. Streefland (1990)
developed a second guideline, which suggests that the informal interpretations and
solutions of students who do not know the applicable mathematics might ‘anticipate’
more formal mathematical practices. If so, students’ initial informal reasoning can be
used as a starting point for the reinvention process. In summary, the designermay take
both the history of mathematics and students’ informal interpretations as sources of
inspiration for delineating a tentative, potential route along which reinvention might
evolve.

As a special point of attention, wemay note that reinvention has both an individual
and a collective aspect; it is especially the interaction between students that is to
function as a catalyst. The designer has to develop instructional activities that are
bound to give rise to a variety of student responses. What is aimed for is a variety
in responses that to some extent mirrors the reinvention route. When some students
come up with more advanced forms of reasoning than others, teachers can exploit
these differences. They can try to frame the mathematical issue that underlies those
differences as a topic for discussion (Cobb, 1997). In orchestrating such a discussion,
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they can then advance the reinvention process. Mark that without such differences,
the teacher will not have a basis for organising a productive classroom discussion,
and will have to refer to soliciting preferred responses by asking leading questions.
We may further observe that in line with the emergent modelling heuristic, the end
points of a guided reinvention process are typically cast in terms of mathematical
objects and frameworks of mathematical relations in the context of a constructivist
elaboration of RME.

12.5.3 Didactical Phenomenology Heuristic

The third RME design heuristic concerns the didactical phenomenological analysis,
or didactical phenomenology for short (Freudenthal, 1983). Here the word ‘phe-
nomenological’ refers to a phenomenology of mathematics. In this phenomenol-
ogy, the focus is on how mathematical ‘thought-things’ (which may be concepts,
procedures, or tools) organise—as Freudenthal (1983) puts it—certain phenomena.
Knowing how certain phenomena are organised by the thought thing under consid-
eration, one can envision how a task setting in which students are to mathematise
those phenomena may create the need to develop the intended thought thing. In this
manner, problem situations may be identified, which may be used as starting points
for a reinvention process. Note that such starting-point-situations may also be used to
explore students’ informal strategies as Streefland (1990) suggests. To find the phe-
nomena that may constitute starting-point-situations, we may look at applications of
the concept, procedure or tool under consideration. Assuming that mathematics has
emerged as a result of solving practical problems, we may presume that the present-
day applications encompass the phenomena which originally had to be organised.
Consequently, the designer is advised to analyse present-day applications in order
to find starting points for a reinvention route. Mark, however, that, as the students
progress further inmathematics, applicationsmay concernmathematics itself. Essen-
tial for valuable starting points is that they are experientially real for the students, that
they concern situations in which the students know how to act and reason sensibly.
An additional function of a phenomenological analysis is that it allows for construing
a broad phenomenological base, which may both strengthen and enrich the experien-
tial real foundation and foster the applicability of the concepts, procedures, or tools
under consideration.

12.6 Pedagogical Content Tools

Wemay complete this exposition on instructional design heuristics with a discussion
of the ‘pedagogical content tools’ (PCTs) that have been put forwards by Rasmussen
andMarongelle (2006) as instructional counter parts of the design heuristics of emer-
gent modelling and guided reinvention. They define a pedagogical content tool as, “a
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device, such as a graph, diagram, equation, or verbal statement that a teacher inten-
tionally uses to connect student thinking while moving the mathematical agenda
forward” (Rasmussen &Marongelle, 2006, p. 388). They describe two PCTs, ‘trans-
formational records’ and ‘generative alternatives’, which in their view address the
problem of how teachers can proactively support their students’ learning. Sometimes
the design heuristics are too general in their view. Transformational records, which
are seen as the instructional counter part of the emergent modelling heuristic, are
defined as graphical representations that emerge as ways to record student thinking,
which are later used by students to solve new problems. As an example, they discuss
an episode of a classroom on differential equations, which starts with the task of
making predictions about the shape of a population versus time (P versus t) graph
for a single species that reproduces continuously and has unlimited resources. The
teacher started the discussion by asking whether the initial slope at P = 10 and t =
0 should be zero or positive. During this discussion—in which the students adhered
to the classroom social norms that they were expected to explain and justify their
solutions, and try to understand their peers—most of the students began to realise
that the slope had to be positive. Thereupon the teacher drew a tangent line vector
with a positive slope as “a notational record of the taken-as-shared reasoning of the
classroom community” (Rasmussen & Marongelle, 2006, p. 396). In a similar man-
ner, the notational record was supplemented with some more vectors. This extended
notational record was used as a means of support by the classroom community, when
sorting out whether the rate of change function would depend only on the size of
the population, or also on the time. The teacher, in short, took a proactive role in
reshaping the initial record, while supporting the students in developing a line of
reasoning that corresponded with what an expert in the subject would recognise as
an emerging tangent-vector field. He did so in such a manner that he at the same
time cultivated the social norms of an inquiry classroom by initiating, and building
on, whole class discussions.

The generative alternatives are linked to the notion that guided reinvention tries to
find a position between too much and too little guidance. Here one of the examples
concerns a problem about salt water—containing 1 lb salt per gallon—that is pumped
into a tank at a rate of 2 gallons a minute. The students came up with two different
ideas about the rate of change, which should be 2, according to some, or 2t, according
to others. By framing the justification of one of both as topic for a whole-class
discussion, the teacher fostered the social norms, as the students were expected to
explain and justify their reasoning and try to make sense of others’ reasoning. When
the students started to lean towards 2t, the teacher realised that the students were not
making a conceptual distinction between rate of change in the amount of salt and the
amount of salt. He then assumedmore responsibility for the content and the direction
of the discussion by pointing out that after t minutes 2t pounds of salt are flowing
into the tank, and asking: Is that the rate of change? In the then unfolding discussion
the students start to realise that the amount of salt after 2 min is 2t (pounds), whereas
the rate of change is 2 (pounds per minute). The authors point out that what makes
this an example of a generative alternative is not just that two alternatives, t and
2t, were discussed. Key here is that this discussion advanced the mathematical idea
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of the explicit distinction between the rate of change in a quantity and the quantity
itself.

With the pedagogical content tools, we have moved from RME theory to RME in
the classroom. We will discuss the latter more extensively in the following.

12.7 RME and Classroom Practice

As is already noted above, the socio-constructivist perspective reveals the complexity
of enacting RME in everyday classrooms. And we may conclude that this is more
difficult than the initiators in the Netherlands were aware of. One of the hurdles con-
cerns classroom culture. There was, and to a large extent still is, a lack of awareness
of the need to invest in changing the classroom social norms. Another difficulty con-
cerns the need to anticipate and build on the students’ thinking. Following Simon’s
(1995) line of reasoning, teachers have to ascertain the students’ level of reason-
ing and design or choose instructional activities that support students in expanding,
and building on, their current ways of thinking. They have to develop hypothetical
learning trajectories (HLTs), which involve anticipating the mental activities of the
students when they engage in the envisioned tasks, and considering how these relate
to the learning goals. This requires teachers to have a sound understanding of the
rationale that underlies the instructional sequences they are working with. Usually,
however, teachers are insufficiently informed about the local instructional theories
that underpin the instructional sequences.Moreover, they are not schooled in thinking
about the mental activities of students.

Wemay add that the students have to play their part as well.We alreadymentioned
the classroom norms, but knowing that they are expected to think for themselves,
explicate their thinking, etc., does not necessarily mean that they are willing to do
so. An inhibiting factor may be the ego-orientation (Nicholls, Cobb, Wood, Yackel,
& Patashnick, 1990) of some students. This includes being more concerned about
how one looks in the eyes of one’s peers, than about solving the task at hand. Fear of
failure may keep those students from starting to work at a challenging task. Teachers,
therefore have to invest in fostering a task-orientation (ibid.), the willingness to work
on mathematical tasks. Important in this respect is that teachers refrain from judging
students by external standards, or comparing them with their classmates, and instead
promote that students take their personal progress as an evaluation criterion. This is
of course hard to achieve with the current emphasis on testing.
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12.8 Recent Research on Instructional Practice
in the Netherlands

Following on the discussion of theory on enacting RME we may ask ourselves how
RME actually works out in Dutch classrooms. This question is actually in line with a
discussion that is going on in the Netherlands about the quality of mathematics edu-
cation. This discussion was evoked by the results of the national assessments, known
as PPON.2 The PPON survey of 2004 showed a significant decline in the mastery of
(procedures for handling) whole number addition, subtraction, multiplication, and
division. However, the results did not decline across the board; the results on vari-
ous other topics showed improvement instead. A comparison of consecutive PPON
surveys (Janssen, Van der Schoot, & Hemker, 2005) showed a positive effect on a
number of topics that RME innovators deem important (Van den Heuvel-Panhuizen,
2010).Wemay further argue that national assessments, and also international assess-
ments—on which the Netherlands were, and are, still doing very well—are too crude
instruments to come to grips with what is going on in mathematics education. This
kind of considerations gave rise to three independent Ph.D. studies, which investi-
gated the proficiency of Dutch students on specific topics, respectively addition and
subtraction up to 100 (Kraemer, 2011), fractions (Bruin-Muurling, 2010), and algebra
(Van Stiphout, 2011). Analysing the results of those three Ph.D. studies, Gravemei-
jer, Bruin-Muurling, Kraemer and Van Stiphout (2016) found that Dutch students’
proficiency fell short of what might be expected of reform in mathematics education
that targets conceptual understanding. In each of those three cases this appeared to
be caused by a deviation from the original intentions of the reform. Firstly, the text-
books capitalised on procedures that can quickly generate correct answers, instead
of investing in the underlying mathematics while accepting that fluency may come
later. In relation to this, the authors speak of “task propensity”, “the tendency to think
of instruction in terms of individual tasks that have to bemastered by students” (ibid.,
p. 26). Secondly, there was an overall lack of attention for more advanced conceptual
mathematical understandings in Dutch textbooks. Instructional sequences in the text-
books end too early, before the more advanced conceptual goals are reached. What
is missing from the instructional sequences is the phase that Sfard (1991) denotes as
reification. The students are not supported in constructing mathematical objects. The
other reason they bring to the fore is that more advanced conceptual mathematical
understandings are not formulated as instructional goals, not in the textbooks, nor in
official curriculum documents. They plead for changing the usual goal descriptions
in curriculum documents by identifying more advanced conceptual mathematical
understandings as key curriculum goals.

2Periodieke Peiling van het Onderwijsniveau (Periodic Assessment of the Education Level).
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12.9 Conclusion

We started our discussion of the socio-constructivist elaboration of RME with the
question of the compatibility of RME and socio-constructivism, and we concluded
that on a meta level both positions are well compatible. We showed that adopting the
collectivist perspective that is inherent to socio-constructivism especially has conse-
quences for how we think about enacting RME in the classroom. Establishing social
norms that encompass student responsibility for coming up with their own solutions
and discussing these and those of other students, is a prerequisite for enacting RME.
We further found that a potential irreconcilable difference concerned the different
views on the role of symbolising and modelling, which created the need to reconcile
the two positions. In relation to this we discussed the emergent modelling design
heuristic, which is designed to circumvent the so-called learning paradox. The emer-
gent modelling heuristic tackles the concern of socio-constructivists that symbols do
not come with an inherent meaning, by ensuring that symbolisations and meaning
co-evolve in a reflexive process, while at the same time supporting the construction
of some new mathematical reality, which may be thought of as consisting of mathe-
matical objects that derive their meaning from a network of mathematical relations.
The heuristic may be characterised as a transition from a model of the students’
situated informal strategies to a model for more formal mathematical reasoning. But
the pith of the matter concerns (a) the sequence of sub-models that together form a
chain of signification, in which activity with each new sub-model signifies activity
with the earlier sub-model, and (b) the construction of a framework of mathematical
relations by the students.We observed that by acknowledging that guided reinvention
and didactical phenomenology also can be seen as instructional design heuristics,
allows an alternative manner of describing RME theory—in which RME theory is
described in terms of instructional design heuristics.

When turning to the classroom practice we of course reiterated the importance
of the classroom culture. We also highlighted that the constructivist elaboration of
RME entails a shift in attention from the instructional sequence with a rationale
or local instruction theory that underpins it, to the local instruction theory with a
series of instructional activities that can be used a resource. For the constructivist
position that students construct their own knowledge implies that teachers have to
adjust their teaching to the students’ thinking. This means that teachers have less use
for ready-made instructional sequences, but instead need at their disposal knowledge
about the intended learningprocess and the possiblemeans of supporting that learning
process, or about local instruction theories. On the basis of this, teachersmay develop
hypothetical learning theories (Simon, 1995), which put the mental activities of the
students at the centre of the teachers thinking. Given the results we reported in the last
section,wemayargue that the local instruction theories the teachers are to be provided
with have to target more advanced conceptual mathematical understandings. The
latter should also be worked as goals in national curriculum documents.
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Chapter 13
Eighteenth Century Land Surveying
as a Context for Learning Similar
Triangles and Measurement

Iris van Gulik-Gulikers, Jenneke Krüger and Jan van Maanen

Abstract In our study, we investigated the value and applicability of the history
of mathematics as a didactical tool for teaching mathematics. Recent literature has
disclosed conceptual, cultural, and motivational arguments for including historical
mathematical texts and methods in the mathematics curriculum. We explored how
these theoretical assumptions worked out when designing historically-based instruc-
tional material and when using this material for teaching. The focus was on teaching
measurement skills and the application of similar triangles to eight- and ninth-grade
students. The profession of the Dutch land surveyor in the 18th century served as a
historical context. Analyses of the data indicated that several aspects of this historical
context were helpful for teaching these subjects. The practical activities along the
18th century lines appeared to have a positive effect on the students’ motivation and
on their conceptual understanding. The ninth-graders reacted more positively to the
historically inspired text than the eighth-graders. The integration of historical ele-
ments, especially the need to read the old language, was generally not applauded, nor
did we observe a positive cognitive effect. Even so, the practical activities inspired
by the context appeared significantly effective and were judged positively by the
students.

13.1 Introduction

Interest in the application of the history of mathematics as a didactical tool can
already be seen in the early 20th century, for example in the work of Otto Toeplitz
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(1927). The new element in the current chapter is the research aspect. Not only do we
present a geometry text at secondary school level that is based on historical problems
and methods, we also survey how this text was used and evaluated by a large number
of students. The survey was part of a project called ‘Reinvention of geometry’,
and followed on the project Reinvention of Early Algebra (Van Maanen, 2002).
Both names reveal the connection with the educational philosophy of Freudenthal
(1973). In his view, the mathematics teacher should guide his or her students to
re-inventmathematics (Freudenthalwrote re-inventionwith a hyphen). This approach
to mathematics education also criticised the antididactic inversion, the phenomenon
that in general mathematics is taught in reversed order: not the problem that led to a
certain theorem is presented first, but in teaching one starts with proving the theorem
and only then comes the problem, as an example or an exercise for the students.

Although Freudenthal was very interested in the history of mathematics, a disci-
pline in which he had great expertise, he doubted whether the reinvention process
should follow the historical line. We will argue in favour of the historical line for
the reinvention of geometry. The student text will also make it clear that historical
reinvention fits seamlessly in realistic mathematics education. We use the profession
of theDutch surveyor in the 18th century as a historical context for teachingmeasure-
ment skills and the application of triangles. From a cultural perspective, this context
is relevant for Dutch students. The profession of surveying was already developed
in the Netherlands in the 17th century. The growing need for surveyors arose from
the expansion of the nation, from designing maps, from the construction of buildings
and fortifications. Since then, surveying served as an educational context and the first
surveying books in Dutch were published.

13.2 Surveying and the Teaching and Learning
of Measurement by Using Similar Triangles

Measurement is generally done by comparing the object that has to be measured
against an instrument. One determines the size of a book by keeping it next to a graded
ruler and by reading off the lengths of its three dimensions. The focus of this study is
on teaching the mathematics needed when it is impossible or unpractical to compare
the object to be measured. For example, think of the situation depicted in Fig. 13.1,
where one wants to measure the width of a river. Nowadays it is common in such
situations to use electronic tools, either based on optics or on satellite signals (GPS).
More attractive for discussion inmathematical education, sincemore transparent and
well accessible at the theoretical level, is the classical method of applying similar
triangles.

Until GPS fundamentally changed surveying, the mathematical tool used in these
cases was the combination of triangulation and trigonometry with the theory of
similar triangles. Much simplified, the surveyor divides the surface to be measured
in a net of triangles. One side of one triangle is then measured accurately in the
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To determine the width of a river, the 18th 
century Dutch surveyor Morgenster uses 
similar triangles. In this way he can stay on 
one shore and does not need to cross the 
water. When he has done the fieldwork, his 
sketch looks like this.

Triangle BCE is similar to BAF. And since
BC, BA and CE can be measured, AF can be 
calculated. So, the width DF of the river is 
known 
(DF = AF – CE).

Fig. 13.1 An 18th century application of similar triangles for measuring the width of a river
(Morgenster, 1744, figure 246)

classical tactile manner (this segment is the base line), and after that only angles are
measured. All other lengths are calculated with trigonometric methods, especially
the sine rule.

In our study, trigonometry was not yet in the curriculum of the classes that we
wanted to observe, so the students worked with similar triangles and with direct
proportionality of two pairs of homologous sides. More generally, we intended to
explore the appeal and power of land measurement as an authentic practice, which
stimulates students to learn (in our case) the theory of similar triangles. And since
the current surveying techniques go beyond the scope of students in eighth and ninth
grade, we proposed to the students in our experiment to imagine that they were 18th
century apprentice surveyors.

This sets the scene: land measurement as an authentic practice in which the
students work with similar triangles, and the historical setting which keeps the
mathematics within the reach of the students.

13.3 History of Mathematics as a Context for Mathematics
Education

Our study is inspired by the movement in the United Kingdom and France which
proposed to teach mathematical subjects in relation with their historical develop-
ment and, if possible, with the help of original problems and sources. The idea was
strongly promoted in the 1990s in France by Evelyne Barbin, who coordinated joint
work on the history and teaching of mathematics between teachers and academics
within the French IREMs (Instituts de Récherche pour l’Enseignement des Math-
ématiques), institutes for the research on the teaching of mathematics. In England,
this idea was propagated by John Fauvel, who edited a collection of IREM papers
(Fauvel, 1990) and published a special issue of the journal For the Learning of Math-
ematics on history in mathematics education (Fauvel, 1991). Fauvel was the driving
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force behind a series of seminal HIMED (History In Mathematics EDucation) con-
ferences, which started in Leicester in 1990. The idea was fostered by developers and
researchers within the International Study Group into the Relations Between History
and Pedagogy of Mathematics (also known as HPM), an affiliated study group of
ICMI. The key survey of the developments by the end of the 20th century is pub-
lished in the report History In Mathematics Education of the respective ICMI Study
(Fauvel & Van Maanen, 2000). In the decade 2001–2010, educational research in
the HIMED domain grew more important. Good historical information about math-
ematical development and suggestions about how this could be used in teaching was
still current. But more than before, studies were done to find out in a more structured
and less anecdotal manner how teaching went with resources in which historical
elements were integrated. Our research, which was part of the broader PhD project
Reinvention of Geometry, belongs to this stream of classroom studies. Teaching
similar triangles in a context in which students acted as 17th century surveyors was
part of the project, discussed in Gulikers (2003). The report of the complete study
appeared in Van Gulik-Gulikers (2005). More recent studies in the same vein are
Glaubitz (2011) and several articles by Jankvist, especially Jankvist (2011), with a
firm theoretical digestion of his earlier work.

The arguments that are mentioned in the 20th century literature on this subject
were analysed by Gulikers and Blom (2001) and can be subdivided into conceptual,
(multi-)cultural andmotivational arguments. Froma conceptual point of view, knowl-
edge of the history of mathematics can result in an enrichment of the didactic reper-
toire of the teacher and in a more conscious use of the teaching methods involved.
Students develop a better understanding by familiarising themselves with the way in
which mathematical concepts developed. From a cultural perspective mathematics is
an activity in which solutions are sought and found for problems from daily practice.
During this process overlaps with other disciplines become visible. In this respect,
it is not unimportant that a major part of the origin of mathematics is rooted in non-
western cultures. This may enhance mutual respect and tolerance in multi-cultural
classes. Using historical formulations of a problem in the curriculum can have a pos-
itive effect upon the motivation of students, because the historical source material
sometimes contains amazing examples that enliven the lessons and challenge the
students.

13.4 Research Questions

13.4.1 Role of History for Motivation

An argument in favour of using the history of mathematics as an educational tool
that some designers and researchers put forward is that it motivates students. The
unusual problems and the practical orientation of historical resources may serve to
create a vivid lesson climate, and break through the common chalk-and-talk lessons.
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History appeals to different fields of interest and to different skills of the students,
and this may enhance their motivation to do mathematics. At least, so it is claimed.
This claim is precisely our main question: To what extent is this claim confirmed
whenwe propose to students an ordinarymathematical textbook chapter in ‘historical
disguise’? This disguise implies that we replaced the usual exercises about similarity
by historical methods and problems from the practice of a surveyor.

To answer this question, we compared the motivation observed in the students
before the experimental history-based lessons, with that observed after the experi-
ment. We also tried to find out whether changes in motivation are caused by the his-
torical elements, by the practical character of the exercises and the actual execution
of measurements, or more in general by the change in the layout of the lessons.

13.4.2 Influence on the Learning Process

A surplus of motivation may have the effect that students understand mathematics
better. Since it is difficult to observe how history affects a student, we chose to
investigatewhat students think about theirmathematical ability: Did the historymake
mathematics more accessible to the students, or did they experience more difficulties
because of the historical elements? Our expectation was that history would make the
content more concrete and that students would therefore find the mathematics easier
to understand.

13.4.3 Students’ View on the Role of Mathematics in Society

Another, different argument in favour of integrating history is that it enables students
to see and almost feel some important applications of history in society. Students
often ask, “Why do we have to do mathematics?” Our lesson design includes a series
of applications that relate to an important period in Dutch history, when measuring
and similar triangles were tools in the hands of builders and architects, the ‘Golden
Age’, in which many Dutch cities were first built or grew larger, in which ports
and fortifications were constructed. Also, students can identify with a mathemati-
cal practitioner, since no measurement exists without someone who performs that
measurement.

13.4.4 Two Questions in the Margin: Is History Essential,
and What Is the Role of Old Language?

Although not crucial when the focus is on measurement, two marginal questions
that arise naturally within the design of our study still deserve attention. The first
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concerns causality: If we notice that motivation improved within the experimental
history-based lessons, can we be sure that this happened as a result of the history, or
is it just the difference in outlook which appeals to the students?

A closely related question is about the authenticity of the historical resources.
WrittenDutch of the 17th and 18th centuries closely resembles currentwrittenDutch,
but especially the fonts used for printing books do cause reading difficulties. This
raises the question of how students react to these difficulties, and how they judge the
extra energy needed to decipher the texts.

13.5 Method

13.5.1 Background

The idea that measurement, and more particularly surveying of land, can be taught in
a historical context and with historical resources, was tested in a design experiment
in two cycles. In both cycles the topic of calculations in connection with similar
triangles was taught using student texts that were based on an 18th century course
for surveyors. The authentic practice of surveying played an important role in the
developed teaching material.

Thefirst cycle of the experimentwas piloted infive classes in the course year 2001–
2002. In 2002–2003 a revised version of the material was tested. In this chapter, we
report about this second cycle. The design for this cycle differed in some respects
from the design used in the first cycle. A new introduction about calculations based
on similar triangles was added to better connect the historical problems with the
mathematical knowledge that the students had at hand. Also, the revised teaching
material gave better support to the students with respect to tasks which required
understanding 18th centuryDutch. TheDutch language has not changed dramatically
since 1750, but not everything is immediately obvious either.

13.5.2 Participants and Data Collection

The second cycle of the experiment was carried out at 16 schools in various regions
of the Netherlands. All in all, almost 1100 students from 46 classes (24 eighth-grade
classes and 22 ninth-grade classes) taught by 32 teachers participated. Data were
collected through:

– questionnaires for both students and teachers, administered before and after the
experimental lessons

– classroom observations of 19 lessons at 9 schools
– evaluations of the students’ work, including worksheets and posters.
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Due to organisational problems, far less than 1100 students filled in both question-
naires. Only the questionnaires of students who participated both before and after
the experimental lessons were analysed.

13.5.3 Teaching Material

The mathematical subject addressed by the teaching material was the application
of similar triangles in the determination of distances and lengths. The material
replaced the chapter on similarity from two Dutch mathematics textbooks (Moderne
Wiskunde1 and Getal en Ruimte2). The historically oriented assignments contained
an introduction on calculating with similarity. Similarity was applied in 17th cen-
tury land surveying to calculate the height of buildings and the width of rivers. The
students were taken back a few centuries and were asked to put themselves in the
position of the surveyor. They first did a historical theoretical assignment on the basis
of old mathematical texts and bits of historical background information (Fig. 13.2).
This was followed by a practical assignment (see below) and finally they made a
poster.

The text for the students was in Dutch, but one of the schools had a bilingual
programme and taught mathematics in English, therefore here an English translation
was used. Figure 13.2 displays the English version of the experimental text as it
was used by the students. The text was written so that it fully replaced the textbook
chapter on similar triangles. In this way, the participating schools did not ‘lose time’,
and the results of experimental classes could be compared to those of classes that
used the textbook.

The practical assignment is a regular element inDutch education, duringwhich the
students, often in couples or small groups,work on amore complex, practical problem
which requires good mastery of the subject taught, as well as other knowledge and
skills. In this case the students carried out measurements in pairs with the aim to
calculate, with the help of the principle of similarity, the height of a building or
the width of a ditch. The students could choose from the various methods they
had seen in the teaching material. Following the choice of the method they had to
design a solution strategy: planning how to do the measurements, followed by how
to incorporate all the findings in a poster.

Teachers were supported by a short teacher manual which gave suggestions for
the distribution of thematerial over the lessons, and for didactical arrangements. This
teacher guide also contained advice about certain exercises, a scheme for evaluating
the practical assignment and the worked-out exercises. Next to this, there was infor-
mation about the historical background, which included an overview of the history of
surveying in the Netherlands. The teacher guide also contained advice and materials
for multidisciplinary activities together with the Dutch language teachers.

1Modern Mathematics.
2Number and Space.



242 I. van Gulik-Gulikers et al.

Historical theoretical assignment: Determining the height of a tower using a stick

The first problem that you will study comes from a mathematics book that was written specifically for 
land measurers and engineers.
The book was published, in Dutch, in 1744 and it was called Werkdadige Meetkonst. 
It was written by Johannes Morgenster especially for his students.
The language of the book is old Dutch, which has been literally translated into English.

Fieldwork.

To find the height of the Tower ADa

without using any Angle measurements; 
one places a Stick CB Perpendicular to the 
ground at a point where one has a good and 
complete view of the Tower, and one sees 
where the line of sight DC comes to the 
ground in E, that is, one looks for the place 
E at which one sees the top of the tower just 
over the top of the Stick; where this 
happens, one places a pin: then measure 
BE, AE and also the height of the stick BC; 
having written these measurements down, 
the fieldwork is finished.
(a) Read the description of the ‘fieldwork’ above. Make the text simpler by making shorter sentences. 

What belongs together? You may mark in the text. Then write a modern, shorter version of this 
text.

(b) What is very uncomfortable when doing this fieldwork?
(c) Look at the figure Morgenster used and make a sketch of it on your worksheet. Label all vertices

clearly.
(d) Why are the triangles AED and BEC similar?

After the fieldwork has been done, the measurements are written down as follows:

In the 17th century, the land measurers did not work with metres and centimetres, but in feet (which in 
England, for instance, they kept until quite recently!). The ‘foot’ was the standard 
measurement.
(e) About how long do you think a foot would be in centimetres?

The calculation is written down by Morgenster in the following way:

(f) Show with a calculation (and explanation!) how Morgenster got his answer.

We take BE. 9, the stick BC. 6 and the line on 
the ground AE. 150 Feet.

The Work.
BE BC AE
9 - - - - - - - - - - 6 - - - - - - - - - - - - - - - - - - - - - 150?

comes AD. the height of the tower to 100 Feet, if the 
line on the ground AE is horizontal

Fig. 13.2 Historical theoretical assignment, text for students (aAs Morgenster did not use italics
to indicate line segments, we will not use italics when literally translating his text)
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13.6 Findings

13.6.1 An Observation: Two Students as Surveyor

In this section, we describe our findings gathered from observing two students when
they were engaged in a so-called ‘practical exercise’, which included the prepara-
tions, the practical measurements and the calculations afterwards. The school where
the observation took place was a bilingual Dutch school (Maartenscollege, Haren),
which teaches mathematics in English. Before the students started on the actual
measurements, they had to design a solution strategy (“plan van aanpak”), in which
they showed the methods they intended to use and calculated the expected results
(Fig. 13.3). The practical exercise was independent student work, about which the
students reported on a poster. When Stefan and Marco started this exercise, they
had already worked on the booklet with application problems about similar triangles
in the context of surveying. So they already knew several classical methods. In the
exercise they were asked to measure the height of the school gym. Their solution
strategy was based on two methods, taught in the booklet:

– Using a mirror which is placed on the ground.
– Looking over the top of a stick.

The first method is based on the work (Fig. 13.5) of the Dutch reckonmaster
Cardinael (1620). See also Fig. 13.3. See for the second method and the elaboration
on the poster Figs. 13.4 and 13.9.

13.6.1.1 Solution Strategy

Stefan and Marco used the two methods mentioned above to measure the height of
the gym of the school. Figure 13.3 shows their worksheet describingMethod 1. They
first designed a solution strategy using fictitious numbers. Method 1 is the mirror
method, illustrated in Cardinael (Fig. 13.5). However, in the following observation it
will become clear that they did not quite grasp the strength of this method, which is
based on the assumption that one cannot know the distance between the mirror and
the object to be measured.

Their text on the worksheet reads as follows:

1. We choose a length from the Maartens College building
[Below the drawing is written:] chosen length e.g., 10 m

2. Place a mirror at ∠C
3. Position yourself at such a distance from the mirror that [looking into the mirror]

you can see ∠A.
[The drawing indicates that Stefan, drawn as a standing figure EF with length

x and called ‘me’, looks into themirror. On the left side of the drawing is written:]
Marco looks over Stefan’s head and sees point A.

[The calculation then reads:]
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Fig. 13.3 Work by Stefan and Marco, Method 1

4. x = 170 cm [BA follows from the equal proportions EF : AB = EC : BC repre-
sented in the table, EC is supposed to be y, for example 3, and BC was chosen
to be x, for example 10; the cross product produces for BA is] (1.7 × 10) ÷ 3 =
5.67.

Figure 13.4 shows the worksheet of Stefan and Marco describing Method 2. Here
they work in a similar manner: ED is now a ‘stick’ (or Marco can serve as a stick; see
below); Stefan looks over the stick and sees ∠C . Again, the lengths AD, DE and EB
are fictitious (2, 3, and 10 respectively). Subsequently, Stefan and Marco collect all
tools that they need for the actual measurements. They borrow a tape-measure from
their teacher. At the physics lab, they acquire a mirror and the porters help them with
a broom, which they will use as a stick.
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Fig. 13.4 Work by Stefan and Marco, Method 2

13.6.1.2 The Actual Measurement

Before we continue the observations of our two surveyors, it is worthwhile studying
Cardinael’s diagram (Fig. 13.5) in its own right.

The method proposed by Cardinael does not involve the length BC. The only
lengths that are to be measured are CD, DE and DF (the mirror is at C, the stick is at
D, so over its top E one sees the top of the tower A in the mirror, and F is the point
on the ground from which one sees A and E in one line). If triangle CDE is then
reflected in DE, the angles ∠ACB and ∠EGD are equal, since they are both equal
to ∠ECD. Therefore, lines AC and EG are parallel and therefore triangles ACF and
EGF are similar. So, AB : CF = ED : GF, and in this proportionality AB is the only
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Fig. 13.5 Cardinael’s
diagram measuring a height

unknown. That, however, was too advanced for Stefan and Marco (they might have
worked like this, but our observation shows that they did not).

Another way of solving this problem, provided one can measure the distance
between the foot of the tower and the mirror, is as follows. Stand where you can see
the top of the tower in the mirror, which will be at point D. Measure the height of
your eyes from the ground (DE), the distance between you and the mirror (CD) and
the distance of the mirror from the tower (BC). It is this second method that Stefan
and Marco use, placing the mirror at a point C (Fig. 13.6). First, they set a fixed
distance for the distance BC, in their case the distance between the mirror and the
wall of the gym. They take BC = 10 m. Stefan searches from where on the extension
of BC he sees the edge of the gym’s roof in the mirror (Fig. 13.6). Marco measures
Stefan’s height (1.64 m) and the distance from Stefan’s feet to the mirror (1.67 m)
and concludes: “Nowwe have all measures and we can start our calculations.” Stefan
makes a note of the measures, and they decide to continue the calculations inside.

For the second method, where they use only a stick, Marco tries to find a point on
the ground from which he can see the edge of the roof and the top of Stefan’s head
in one line (Fig. 13.7). Next, Stefan measures his distance to Marco (4.12 m), and
comments: “The measures are not nice, but [that is not really a problem, because]
we can use a calculator.” Then, Marco, speaking to Stefan: “We do not even use the
broom, since you are the stick.”

13.6.1.3 The Calculations and the Poster

While Stefan is still engaged in drawing, Marco also elaborates on the method with
the stick (Fig. 13.8). For the height of the roof he finds 6.29 m (15.79×1.64

4.12 , in which
15.79 comes from (15.79 = 10 + 1.67 + 4.12). Marco says: “That is a very big
difference between both methods.” He reconsiders his own work and continues:
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Fig. 13.6 Stefan sees the edge of the roof in mirror C; Marco measures Stefan’s distance from C

Stefan and Marco are engaged in determining the 
height of the roof of their school’s gym. With his 
head on the ground, near the threshold of the 
school building, Marco tries to find a point from 
which he can see the roof and the top of Stefan’s 
head in one line. “Measuring is really difficult! 
Especially, to keep the door open!”, is the text by 
Stefan and Marco on the poster on which they 
report about their measurements

Fig. 13.7 Marco tries to find a point from where he can see the roof and the top of Stefan’s head
in one line

“Both methods look alright, but there is quite a difference; 9 m seems rather high to
me.” In the meantime, a classmate asks whether Stefan and Marco have calculated
the height in two ways.

“Yes”, Stefan says, “but we have two different answers.” The classmate says:
“How is that possible?” Stefan answers: “That is what we are trying to find out.”
Then, Marco proposes to make a scale drawing of the situation for the stick method
(Fig. 13.8). First, he draws the distance from the gym to the point on the ground, and
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Stefan first makes a careful drawing of the 
first method (with the stick).
Marco calculates the result from the method 
with the mirror directly. He writes down the
following proportionality table

1.64 1.67
x 10

and then calculates the result with a cross
product

= 9,8 m 

Fig. 13.8 Marco and Stefan at work with their data

then he inserts the ‘stick’ in the right position. With the help of the ray from the eye,
he then draws the edge of the gym roof. Then he inserts the mirror in the drawing,
in the right place.

Then, it is time to measure in the drawing. Marco determines the height of the
gym, taking the scale into account. He says: “Themethodwith the stick seems to have
given the right answer: 6 m seems logical for the gym.” Afterwards, the boys proceed
to find out what went wrong with the mirror method. Marco suggests measuring the
two angles at C (incidence and reflection) in the drawing. If these angles are not
equal in the drawing, the boys must have made a mistake in their measurements.
They inspect the angles in the drawing and find them to be unequal. Marco says to
Stefan: “So, you did the sighting incorrectly.” Stefan answers: “Or you were wrong
when you measured the distances.” The end of lesson signal ends this collaboration,
which lasted a double lesson (100 min). Stefan and Marco decide that they want to
redo the measurements at a later moment.

Stefan and Marco reported about this practical exercise in a poster. They clearly
had first repeated the measurements. In the poster they illustrated the methods used
with drawings.With the new figures they presented their final calculations (Fig. 13.9)
and their conclusions (Fig. 13.10). They found different results for the two methods.
The stick method led to 6,8 m. With the mirror method their calculations for the
height of the building resulted in 6,697 m.

With respect to the technical execution of the performedmeasurements, two com-
ments can be made, which also throw some light on the deviations between the final
results. First, in Fig. 13.6, Stefan looks into the mirror at C. In this case, not Stefan’s
length (1,64 m) should be used in the subsequent calculations, but the height of Ste-
fan’s eye. This will be about 10 cm less than his length, which will lead to a more
accurate result in Fig. 13.8, where the calculation is carried out.

Second, in Fig. 13.7, Marco sights the roof and “the top of Stefan’s head in one
line” (at least, that is what the two are thinking). But the ray from Marco’s eye to
the roof is tangent to the side of Stefan’s head and not to its top. In this case they
should not calculate with Stefan’s length but with a larger number, which depends
on Stefan’s length, the radius of his skull and the slope of the ray from Marco’s eye
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Stick method
Scale:  1:50

The calculation with the 
stick method

want = because
is hetzelfde deel van = is the 
same part of

Fig. 13.9 Part of the poster with report on the stick method

Conclusion: Both methods give a different 
answer. The difference, however, is so 
minimal that we are satisfied with our 
result.

We still think that the stick-method is 
somewhat more reliable because the 
sighting in the mirror is regularly wrong. 
So, we assume that the height of the gym is 
about 6.8 m.

Fig. 13.10 The part of the poster with conclusions



250 I. van Gulik-Gulikers et al.

to the roof. Both problems do not arise if a pointed stick is used instead of the human
body.

13.6.1.4 Provisional Conclusions Based on the Observations of the Two
Students

Apparently, the exercise had a number of features which only come upwhen students
actually carry out the measurements. The well-known but not often experienced fact
that people make errors when measuring, is revealed here thanks to the two methods.
Quite probably the method with the mirror is less precise than the stick method,
although a deeper analysis is necessary to clarify this matter. The decision to make
a scale drawing is also very interesting. There is nice intuitive reasoning here. If in
reality the angles are equal (they should be equal because of the reflection law), then
they must also be equal in a scale drawing. Finally, the attention that the students
pay to the (probably unexpected) problem of finding different heights for the same
object, their honesty and eagerness in dealing with this problem and the decision
to redo the measurements gives insight into how scientific ethics develop in young
students. The problems inherent with measurement prompted them, and they took
up the challenge.

13.6.2 Findings from All Students Involved in the Data Set

Next to doing observations on a micro-level, we investigated the judgements of the
students about the historical and practical aspects of the teachingmaterial. Table 13.1
gives an overview of our findings based on the pre- and post-questionnaires, on inter-
views with students and teachers, on classroom observations and on evaluations of
written material produced by students (exercises and posters). Only the question-
naire data of the students who filled in the questionnaire both before and after the
experimental lessons were included in the analysis. The results are marked posi-
tive (+) when there is significant positive statistical evidence, indecisive (±) when
there is both positive and negative evidence and negative (–) when there is signifi-
cant counterevidence. In the remaining part of this section these results are further
elaborated.

13.6.2.1 Students’ Motivation

Working with the text for students in which elements from the history of mathemat-
ics were integrated, had a negative effect on the motivation to learn mathematics.
Judgements by students were rendered on a scale from 0 (“history is not useful,
not agreeable, …”) to 1 (“history is interesting, nice, useful, …”). The difference in
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Table 13.1 Judgement of students on historical and practical aspects

Hypotheses, and related points of inquiry Result

1 Thanks to the instruction according to the experimental design, students became
more motivated for doing mathematics

–

By which characteristics of the design do students become more motivated? By

– the integration of history in the tasks –

– the execution of a practical exercise +

– the change in working procedures ±
– the change in the type of tasks –

2 Thanks to the instruction according to the experimental design, students develop a
better understanding of mathematical concepts and methods

±

According to the students, which aspects of the learning process were influenced
by the experimental design? Students say about mathematics that they

– find it easier because of the integrated history –

– find it easier to remember +

– have a better understanding thanks to the concrete materials +

3 Thanks to the instruction according to the experimental design, students have a
better view of the role that mathematics plays in society

–

Which elements in the design are responsible for the better view of the role of
mathematics in society?

– The historical applications –

– The possibility to identify with the (life and work of a) 17th century surveyor +

– The execution of the practical exercise +

motivation between before and after working with the experimental text was found
to be significant (p < 0.01) (Table 13.2).

There were also significant differences between subgroups. This was the case
between those students who find mathematics easy and those who find mathematics
difficult (see Table 13.3). Students who in the pre-questionnaire indicated finding
mathematics easy, were less motivated to learn mathematics after working with the
experimental text. For those who found mathematics difficult beforehand, nothing
had changed in their motivation after working with the text.

Another relevant difference is that between those students who preferred to do
problems with bare numbers, and those who reported to like problems that they

Table 13.2 Motivation to learn mathematics before and after working with the experimental text

N M (SD) Difference

Motivation before working with the text 429 0.57 (0.21) −0.03*a

Motivation after working with the text 429 0.54 (0.21)

aHere, and in the following tables, one asterisk indicates that the result is significant at the level of
p < 0.01
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Table 13.3 Motivation to learnmathematics before and after workingwith the experimental text by
students who indicated finding mathematics easy and students who indicated finding mathematics
difficult

“Math is…” N M (SD) Difference within
subsets (SD)

Difference
between subsets

Motivation
before
Motivation after

Easy 304 0.63 (0.19)
0.59 (0.20)

−0.04* (0.15) 0.04*

Motivation
before
Motivation after

Difficult 106 0.41 (0.20)
0.41 (0.21)

0.00 (0.17)

Table 13.4 Motivation to learn mathematics before and after working with the text for students
who prefer bare number problems and for the students who prefer context problems

“I prefer…” N M (SD) Difference
within subsets
(SD)

Difference
between subsets

Motivation
before
Motivation after

Bare number
problems

225 0.59 (0.20)
0.56 (0.21)

−0.03* (0.17) 0.00

Motivation
before
Motivation after

Context
problems

190 0.56 (0.23)
0.53 (0.22)

−0.03 (0.14)

have to derive from a story (see Table 13.4). The motivation of the first group had
decreased after working through the text, while for the second group the change was
not significant.

One explanation for the negative effect on the motivation of the students is that the
students appeared to encountermany difficulties with the historical sources presented
in the old Dutch language. They were not acquainted with it, and they experienced
reading and interpreting these texts as too complicated and time-consuming. Some
students remarked that working with these sources “has nothing to do with math-
ematics”. They reported that it had “no use” for them and they also called it “a
waste of time”. This reaction was not unanimous, though, since other students said
that they found it interesting to learn something about the old language. These stu-
dents considered it a challenge to derive the mathematics from the historical source
material.

Another important reason why the motivation of students was not stimulated by
the integration of history is that it made the tasks much more complex than they
were used to. Working with this material requires other competences, and, as some
students said, they do not like that. It makes mathematics less attractive for them.
Much also depends on the insight and support of the teacher.

Although the quantitative data were not that positive, classroom observations
made by the first author and interviews with students and teachers enabled us also to
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signal some encouraging effects (though these positive reactions did not dominate).
During the observations and the interviews, it came to the fore that the variation in
activities was considered as positive; especially the change in perspective. History
gives an unexpected turn tomathematics and it makes the lessons livelier. Both teach-
ers and students appreciated learning about howmathematics was applied in the past,
for example, the methods to measure the height of a building. And the interviewed
students were especially enthusiastic about applying these methods themselves in
reality.

In particular, the concluding practical assignment was valued positively. An open
question at the end of the lesson series revealed that three quarters of the students liked
the practical assignment. Most students found that the practical assignment brought
interesting variation and also a challenge, namely, they themselves could make a
practical application of the theory that they had studied in the preceding lessons. In
doing so, they saw that what they had learned in the text about 17th century surveying
“really worked”. Students liked that they were allowed to go outside during their
mathematics lesson, which is “different from an ordinary lesson in the classroom”.
Also, the cooperation with fellow students in measuring the height of a building was
welcomed. Students were thrilled that, “without modern tools”, but “with simple
materials”, they were able to do the necessary measurements themselves.

Students who did not fully understand the mathematical explanation in the exper-
imental text did not like the practical assignment, because they had no clear clue how
they should do the measurements. Some students found the step from the theoreti-
cal explanation of plane geometry in their regular textbook to the practical task of
measuring in space difficult. Some of them also preferred to do “just abstract math-
ematics”. They called the practical assignment superfluous, because they “know for
certain that they will never apply these measuring methods”.

13.6.2.2 Influence on the Learning Process

Working with the historically-oriented experimental text did not change the view of
students about howwell theywere able to do theirmathematicalwork (the feasibility).
Some students found the exercises easier because the information about the ancient
ways tomeasure made the text less abstract. They commented that they learnedmuch
from carrying out the applications. They memorised better what they had to learn,
because it fired their imagination. Thanks to the practical assignment—they said—
they sooner noticed mistakes that they had made in earlier, formal exercises, since
now they “had to really think about the matter”. This put a check on their acquired
knowledge.

Teachers said that they noticed that students remembered with more ease how
calculations on similar triangles had to be performed. They expected that the stu-
dents in the experimental group would have a better command of the concept of
similarity in a later school year than the students who did the regular chapter from
the textbook. Our study did not extend so far that we can confirm or reject this claim.
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It would certainly be interesting to investigate the effect of such experimental text
on memorisation and retention.

Clearly, other students had problems due to the historical elements. One third of
the students indicated that the historical practical assignment was one of the most
difficult elements of the experimental text. Problems arose from the old language,
and also because the mathematics was not as straightforward as it is presented in
the textbook. Many students needed to get acquainted with more complex and more
extended exercises. They were used to questions subdivided into sub-questions, and
often directly related to the mathematical theory and to examples that were just
discussed. Now, they had to figure out a strategy themselves, and that was difficult
for them. Students who had previously worked on unusual exercises, in projects and
small research tasks, were better equipped for these practical exercises.

We found a remarkable significant difference in the judgement about feasibility
between two subsets of the students, that is between the studentswho had answered in
the pre-questionnaire that they found mathematics easy and those who had answered
that mathematics was difficult for them. In both groups there were many changes in
judgement (see Table 13.5). The subset that at first found mathematics easy shifted
towards difficult, and in the other group there was a shift from difficult in the pre-
questionnaire to easy in the post-questionnaire.

There was also a noticeable difference in shift between the eighth-grade and
ninth-grade students who worked with the experimental text (see Table 13.6). For
the eighth-graders, the idea that mathematics is feasible shifted significantly to less
feasible. For the ninth-graders there was no significant shift.

The posters and reports about the practical assignments revealed that inmost cases
the students mastered the calculations based on the concept of similarity quite well.
This does not hold to the same extent for the historical exercises in the theoretical
part of the experimental text. In several lessons, the first author observed that for
the practical assignment, in which calculations with similar triangles were the basic
ingredient, students first returned to the theoretical sections with the mathematical
explanations and retried the unsuccessful calculations. Those students who were
again unable to do the calculations, also failed on the practical assignment.

Table 13.5 Students’ judgement about the feasibility of mathematics before and after working
with the experimental text for students who at first found mathematics easy and who at first found
mathematics difficult

“Math is… N M (SD) Difference
within subsets
(SD)

Difference
between subsets

… easy”, before
… easy”,
afterwards

Subset easy 345 0.74 (0.13)
0.70 (0.15)

−0.04* (0.12) 0.10*

… easy”, before
… easy”,
afterwards

Subset difficult 126 0.35 (0.11)
0.41 (0.16)

0.06* (0.14)
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Table 13.6 Eighth- andninth-grade students’ judgement about the feasibility ofmathematics before
and after working with the experimental text

“Math is… N M (SD) Difference
within subset
(SD)

Difference
between subsets

… easy”, before
… easy”,
afterwards

Subset Grade 8 205 0.64 (0.22)
0.60 (0.21)

−0.04* (0.14) 0.05*

… easy”, before
… easy”,
afterwards

Subset Grade 9 266 0.63 (0.21)
0.64 (0.19)

0.01 (0.13)

Table 13.7 Students’
judgement about the
usefulness of mathematics
before and after working with
the experimental text

“Mathematics is … N M (SD) Difference

… important and useful”,
before

476 0.67 (0.18) −0.04*

… important and useful”,
after

476 0.63 (0.18)

13.6.2.3 Students’ Views on the Role of Mathematics in Society

The importance and usefulness of mathematics is, unexpectedly, noticed less by the
students after having worked through the experimental text (see Table 13.7).

For an explanation of this finding, one could argue that students already knew
about the importance and usefulness of mathematics before they started to work
with the experimental text. The historical context would then not add anything to
their view. Moreover, the problems with the old language might even have distracted
them from their views and beliefs about mathematics.

However, in the open questions of the post-questionnaire, students answered that
the experimental text sheds light on the societal role of mathematics. They noted
that they saw how mathematics was applied in the 17th century, especially in the
measurements done by the surveyor. This raised enthusiasm, since they now saw
what they could do with their mathematical knowledge. Whether or not the histori-
cal presentation helped, is still disputed. Some students appreciated the elementary
character of the tools, while others said that there was no need to work with these old
instruments, since current measuring equipment would let you determine location
and height much easier.

13.6.2.4 Students’ Opinions About the Integration of History

Table 13.8 summarises what students thought about the integration of history in the
experimental text.
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Table 13.8 Students’
opinions about the integration
of history

“Thanks to history… N M (SD)

… I was more motivated” 654 0.38 (0.24)

… I found mathematics easier” 604 0.44 (0.22)

… I see that mathematics is useful” 665 0.42 (0.22)

In the open questions in the post-questionnaire 37% of the students indicated that
in their view history made the mathematics lessons more attractive. It was impor-
tant for them to see where mathematics comes from, and “how people worked in
the past”. This was useful if they wanted to apply mathematics themselves. They
also appreciated the experimental approach as a welcome interruption of the usual
“throwing around figures” and boring problems “without a story”.

Some students emphasised that the experimental text attracted them because they
liked the two disciplines, mathematics as well as history, and they said that they liked
the combination. Others valued that they now knew more about the development of
mathematics, but for them it had rather been “just mathematics” and not “that old
Dutch”.

When students were asked what they found least attractive about the experimental
text, 20%of the students pointed at the exerciseswith a historical character.Moreover,
30% counted these exercises among the most difficult elements in the experimental
text. They reacted by saying “all these stories are difficult” and “are not really about
mathematics”. Just as some students were in favour of both mathematics and history,
there were students who disliked both disciplines. For them the experimental text
was doubly unpleasant. A common objection was that the two disciplines should
be treated separately. Students who had this objection found that when history is
integrated within a mathematical text, “it is not about mathematics anymore”. Also,
the focus on the past was rejected by some students. They would rather hear about
current developments and were of the opinion that “mathematics should rather be
directed towards the future”.

As expected, regarding the students’ opinions about the integration of history
several differences were found between different groups of students. The students
who liked to derive a problem from a story were more positive about the historical
elements than thosewhopreferred to do problemswith bare numbers (seeTable 13.9).

As is shown in Table 13.10, differences were found between the eighth- and
ninth-grade students with respect to motivation, perceived feasibility, usefulness of

Table 13.9 Appreciation of the historical elements in the experimental text by students who prefer
bare number problems and by students who prefer context problems

Subset
“I prefer…”

N M (SD) Difference between
subsets

Appreciation of
history in text

Bare number problems 343 0.35 (0.23) 0.06*

Context problems 237 0.41 (0.26)
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Table 13.10 Eighth- and ninth-grade students’ opinions about their motivation, perceived
feasibility and usefulness of mathematics, and attractiveness of history-based mathematics lessons

N M (SD) Difference between subsets

More motivation Grade 8
Grade 9

317
337

0.34 (0.24)
0.41 (0.24)

0.07*

Mathematics is easier now Grade 8
Grade 9

289
315

0.40 (0.22)
0.49 (0.21)

0.09*

Mathematics is useful Grade 8
Grade 9

319
346

0.41 (0.22)
0.43 (0.22)

0.02

Attractiveness of history-based
lessons

Grade 8
Grade 9

291
287

0.31 (0.46)
0.43 (0.50)

0.12*

Table 13.11 Students’ opinions about usefulness ofmathematics for students who had joint lessons
in Dutch language and mathematics and students who did not have joint lessons

Joint lessons Dutch
language and
mathematics

N M (SD) Difference between
subsets

Mathematics is useful “No” 579 0.41 (0.22) 0.08*

“Yes” 86 0.49 (0.22)

mathematics and the attractiveness of history-based mathematics lessons. The ninth-
graders were more positive than the eighth-grade students about their motivation
and the perceived feasibility of mathematics. For their opinion about the useful-
ness of mathematics some difference was found between the eighth- and ninth-grade
students, but this difference was not significant. The open question about the attrac-
tiveness of mathematics lessons in which history was integrated was answered more
positively by the ninth-grade students.

As expected, there was also a significant difference between the students who
studied the experimental text in lessons in which the Dutch language teachers and
mathematics teachers worked together, and the students who studied the text only in
the mathematics lessons. The first group recognised the usefulness of mathematics
significantly more clearly (see Table 13.11).

13.6.3 Judgements and Views of the Teachers

A first finding was that experience helps in teaching history-based mathematics
lessons. This was clearly concluded by teachers who participated in both cycles of
the experiment. They reported that they could deal with the material more easily in
the second cycle. The experimental text and the supporting teacher material were
designed so that all teachers could work with it, including those who had no prior
experience with the integration of historical elements in mathematics lessons. Of the
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teachers who were not involved in the first cycle, many did not have experience with
this. When they were asked in advance what the integration of historical elements
meant for them, it appeared to be restricted to giving information about a great name
or an important year as a bit of background for a new subject. Despite the fact that
they had less experience with using historical material, the overall reaction of the
teachers was that they were stimulated by this material. It increased their motivation
for mathematics.

Since the commitment and approach of the teachers are important for the execution
of such uncommon lessons, it is important to note that all the 32 teachers who taught
the experimental text in the second cycle did so on a voluntary basis and that their
overall reactionswere positive.To illustrate this,wequote here a number of comments
by one of the teachers, who sharply analysed some of the central issues discussed in
our chapter. According to this teacher,

[t]he benefit of the project must be found in the integration of your textbook and a part of
the history of mathematics. The textbook chapter on similarity can be used straightaway as
an introduction to its practical application. That is your main benefit. You do not lose time,
whereas you acquire a definite additional advantage.

Another remark was that the experimental text helped to answer questions about the
usefulness of mathematics.

Students often come up with the remark that they do not understand what purpose is served
by mathematics. In what way is it enjoyable and what can you use it for? As a teacher, you
have of course some examples at your disposal to clarify things a little bit. In the textbook,
there are certain contexts that may help you. But still, how do you visualise that mathematics
has a certain relevance?

Also, the teacher emphasised that not only students can profit from the practical
assignment, the teacher does so as well.

Especially the practical assignment appeared to be a challenge. Leaving the classroom and
then finding an object in the vicinity of the school that you have to measure. Making your
personal choice from the methods that have been discussed. You are bound to notice large
differences in the ways students try to come with a solution. An excellent opportunity to
see what skills are being used. Accompanying several groups gives you the possibility to
observe the thought process.

Furthermore, the teacher discussed the problem of working with texts in older Dutch.

Students must get used to this kind of ‘old language’. However, if you help them along they
will usually manage. It gives you the opportunity to have a useful talk about mathematics.
In any case, for a part of the students it is a challenge. Students help each other and together
they are trying to find a translation for the text. It is a good thing to see them working and
trying to solve a problem. Especially working together under the supervision of the teacher
gives an extra dimension to the work. Reading, reading again, drawing up a sketch, adding
the missing data and classifying them.
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13.7 Conclusions and Discussion

Earlier, we already drew some provisional conclusions based on the observations
of the two students. Based on the larger group of students and teachers involved,
we can conclude now that the domain of measurement is important in mathematics
education for several reasons:

– it engages students in practical activities
– it often requires cooperation in order to produce good results
– the measuring errors provoke valuable discussion between students; it could also
be taken as the starting point for statistical considerations

– the use of tools, and the discussion about what tools to choose in relation with
their possibilities and precision, is a welcome aspect; the discussion needs not to
be provoked, since now that the world has GPS, students rightly question why one
still needs all these triangles and calculations

– it is an area well within reach of the students, in which they themselves can apply
formal mathematical theory.

The analysis of the pre- and post-questionnaires showed that students appreciate
practical measurement activities and surveying. Students produced their own results,
independently from the teacher. The results mean something, and in doing the mea-
surements and the resulting calculations students could identify themselves with a
mathematical practitioner: the surveyor.

Furthermore, in addition to what is said already, particularly in Table 13.1, about
our findings on the role of history in teaching mathematics we would like to add
here that we observed that quite some students have a view on mathematics that
leads them to a quick rejection of the experimental text. For them mathematics is
doing short problems according to a clear example, and preferably with the least
amount of text possible. When they start working on a problem, they expect that the
solution strategy is at hand as soon as they have read the problem. For these students,
the experimental text was ‘wrong’ in a number of respects: it required reading,
it required time-consuming practical work, and the strategies were not immediately
clear.Moreover, themethodswere outdated and produced results that can be obtained
much quicker and with greater precision. Indeed, they do have a point. However,
there is also a point to the wide range of possibilities that the historical aspects offer,
namely to connect mathematics teaching to culture, to language, to appreciating
the centuries when the Netherlands were an economical power. There is a point in
learning to solve complex problems, in learning to do practical work and learning to
cooperate. Another finding is that we could identify particular subgroups of students
that responded more positively to the history in the experimental text: those who
were taught mathematics and the old language jointly, as well as those who already
liked to solve ‘word problems’. Also, the ninth-grade students were more positively
than eight-graders. Therefore, we may conclude that history is not essential, but that
for some students it is beneficial.
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The concept of similarity and the applications of similar triangles is a topic that can
adequately be taught (and learned!) in the context of practical problems. Measure-
ment is a crucial part of this approach. Integration of historical elements is possible,
but probably one will obtain the same or maybe better results without history. The
topic is suitable for inviting a visiting practitioner for a guest lesson.

A major reason for students to dislike the experimental text was that it was too
complicated and long for them, and that they did not immediately understand the
problem or see the solution strategy. This reaction of the students is maybe influenced
by the structure of the textbooks. In secondary education, textbooks are meant for
students to work on independently, i.e., without the help and sometimes also without
the presence of a teacher. The consequence is that tasks that require fundamental
thinking, broader exploration and endurance, are skipped or split into a number of
small, easy-to-digest parts. Hence, it is no surprise that students noticed the difference
between themore complex tasks in the experimental text and the usual problems from
the textbook, and that some of them answered that for that reason they disliked the
experimental text.

The responses of 32 teachers who volunteered to teach similar triangles in the
second cycle of the experimentwere stimulating. Itmightwell be that in some schools
the teachers learned more from the experiment than their students. The comments of
the teacher quoted earlier, showed which aspects of the text were welcomed as they
are.

In this study we have not studied how the approach and attitude of the teacher
influenced the results and views of the students. This is one important question that
remains open for later research. In addition, there were many more questions that
came up during our study that need to be answered before we can fully benefit from
history as a didactical tool for teaching mathematics. Further research is necessary
in several directions, including issues such as

– the age of the students (would this type of text be more suitable for older students,
maybe for student teachers?)

– the value of such a text for the teacher (would it be a useful resource for professional
development, for a lesson study?)

– the influence of the approach and attitude of the teacher
– the possibly avoidable problems with the old language (Is it possible to maintain
the historical character without direct access to the sources?)

– the aspect of memory and retention (what is the effect of a text like the one studied
here in the longer term and does it lead to better retention of the concepts and
methods?).

Although the work on using the history of mathematics as a didactical tool for
teaching mathematics is not yet finished, and many important questions require more
research, it is remarkable that, since we carried out our research and reported about
it, the history of mathematics has become in many teacher education institutions a
standard feature in the education of teachers. In most of the institutions which teach
the history of mathematics, designing lessons in which history of mathematics plays
a major part, has become one of the assignments.
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Chapter 14
The Development of Calculus in Dutch
Secondary Education—Balancing
Conceptual Understanding
and Algebraic Techniques

Martin Kindt

Some time ago I read about efforts to improve the teaching of
analysis by raising standards of rigour. I believe that analysis at
school can be improved only by relating it closer to reality. If
more abstraction is not counterbalanced by a closer proximity to
reality, it will only yield more unrelated and thus worthless stuff.
Freudenthal (1973, p. 580).

Abstract Compared to neighbouring countries, in the Netherlands a nationwide
introduction of calculus in secondary education took place rather late. This happened
in 1958 after a discussion of fifty years between advocates of the teaching of calculus
in school and their opponents. From the 1960s on, there has been an acceleration in
curriculumchanges. First the curriculumwas influenced by theNewMathmovement.
This resulted in a rather formal course that became compulsory for almost all students
in pre-university secondary education. Many of them experienced serious problems
with the acquisition of this topic. Then, in reaction to that, influenced by Realistic
Mathematics Education, three calculus courses were developed that tried to build
on a meaningful introduction, with applications incorporated, for secondary pre-
university education and secondary pre-higher vocational education. Finally, calculus
became relevant and within reach of all students of the higher levels in secondary
education.

14.1 A Forwards Run of Fifty Years

In 1905 two Dutch mathematics teachers, F. J. Vaes and C. A. Cikot, argued strongly
in favour of the introduction of differential and integral calculus in the curriculum of
Dutch secondary schools. The principal argument for introducing calculus was that
in the subjects physics and mechanics calculus was applied in a disguised way in
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only one context, which limited understanding of the underlying process. The idea
of introducing calculus at secondary school was discussed seriously, but in the end
rejected by the association of secondary school teachers. Nevertheless, there were
some teachers in that period who were experimenting with teaching calculus, and at
least two calculus textbooks were issued.

The textbook by Van de Vooren (1919) was titled Grenswaarden. Eene inleid-
ing tot de differentiaal-en integraalrekening, or in English: Limits. An introduction
to the differential and integral calculus. According to me, this book is one of the
best Dutch calculus textbooks for secondary education ever written. It starts with
an introductory chapter on constant and variable quantities. This was in fact a short
and informal way to teach the concept of function with real-world examples like the
weight of a person dependent on his age, or the length of an iron bar as a function
of its temperature. These examples were combined with graphical representations.
This kind of introduction was very modern at that time, but nevertheless the imple-
mentation of so-called ‘functional thinking’ in mathematics would take almost the
whole twentieth century.

InVan deVooren’s book, after the introduction, a paragraph about limits of infinite
sequences followed.As an example of a geometric limit the author considers the slope
of the tangent in the point P(1, 1) of the parabola with equation y = x2 as a limit
of chords. He uses the sequence 1, 1

2 ,
1
4 ,

1
8 ,

1
16 , . . . of changes in the x-coordinate of

a variable point Q on the parabola tending to P. The slope of the chord PQ in the
general case that Q has an x-coordinate 1+ (

1
2

)n
is equal to 2+ (

1
2

)n
, and this tends

to 2 for n → ∞, which may be called the local slope of the curve in P. This is an
example of ‘the road from discrete to continuous’ which in my eyes could be—or
should be—an important principle in the teaching of elementary calculus.

Another remarkable point in Van de Vooren’s book is the inclusion of many
practical applications, like Newton’s law of cooling, atmospheric pressure related
to altitude, the working of a windlass, the refraction law of Snell, current intensity
related to resistance, the harmonic movement. In short, one may conclude that this
book was a real treasure for a good teacher. But how many teachers would have used
this book or similar teaching resources for calculus? I am quite sure that there was
only a very small minority of teachers who would spend a number of lessons on
tackling these first principles of calculus.

Anyway, pioneers like Vaes, Cikot and Van de Vooren initiated and promoted
thinking about curriculum reform, and, as a result of this, in 1926 a report about
a new curriculum was published in Euclides, the Dutch magazine for mathematics
teachers. The committee responsible for this report consisted of four people of which
the president and secretary, H. J. E. Beth and E. J. Dijksterhuis, were highly qualified
teachers in mathematics. Both had published a number of scientific books. Beth
wrote a history-based book about non-Euclidean geometry. Dijksterhuis wrote a
book about the mechanisation of the world view, which is his most famous book and
for which he received the prestigious P. C. Hooft Award. A typical quote from the
Beth-Dijksterhuis report is:
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… the aim of placingmathematics education in the service of functional thinkingwith the aid
of graphic representation to display a realistic view of how a quantity changes in relation to
a variable quantity, leads inevitably to the teaching of the basic elements of calculus. (Beth,
Van Andel, Cramer, & Dijksterhuis, 1925, p. 125) (translated from Dutch by the author)

The report proposed explicitly to include elements of differential and integral cal-
culus (with applications in kinematics and in solid geometry) in the new curriculum.
This proposal led to a great deal of discussion between supporters and opponents.
Some professors at the Technical University in Delft were not in favour of including
calculus in the mathematics curriculum in secondary school. One argument was the
impossibility of teaching the limit concept in a concise way, and consequently future
students in exact sciences would be spoiled in secondary school.

Finally, in 1937 the existing curriculum was adapted and then confirmed by the
Ministry of Education. Calculus appeared in the formal curriculum, but the topic was
not supposed to be a part of the Centraal Schriftelijk Eindexamen (CSE), which is the
national written final examination at the end of secondary school. In the Netherlands,
this examination has a strong influence on educational practice. Therefore, calculus
became an optional subject, which meant that only a fewmathematics teachers made
time for calculus in their lessons. This situation would continue until 1958!

14.2 After 50 Years of Discussion, Calculus Entered
the National Written Final Examination

In November 1948, a historical event took place: the first two-day conference about
the didactics of mathematics was organised. One of the initiators was Hans Freuden-
thal who was also the chairman of the conference. At this conference Van Hiele gave
a lecture, titled “An Attempt to Frame Guidelines for Didactics of Mathematics”, in
which he quoted a known author of textbooks for physics who had asserted that in
Grade 10 the concept of limit, the derivative and the definite integral should be taught
for the convenience of the physics teacher. Van Hiele agreed with this assertion and
underlined that kinematics, which is taught in physics, is the most adequate entrance
to differential calculus.

In January 1954, a committee was appointed to report on the subject of mathe-
matics as a whole and the examination programme, and in February 1955, the com-
mittee’s report was published. In the introduction section of the report it was stated
that in science education the mathematics component had arrived at an impasse,
particularly concerning differential and integral calculus. They posited that it should
be possible to teach calculus in a didactically sound way, with no less rigour than
for other subjects and yet according to the capacity of the students. To prevent an
unwanted development in the future, the committee proposed to stop the calculus
curriculum just before the introduction of the number e and the differentiation of
exponential and logarithmic functions. The calculus part of the report was received
positively.
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Fig. 14.1 An example of a calculus problem in the national written final examination of 1963
(translated from Dutch by the author)

The first new national written final examinations in 1961 and 1962 included only
one calculus problem. In 1963, two calculus problems were part of the examination;
including one very nice one (see Fig. 14.1).

At the same time, early in the 1960s, a newand internationalmovement arose:New
Math. In June 1961, the Commissie Modernisering Leerplan Wiskunde (CMLW)1

was appointed by theDutch State Secretary of Education. The committee consisted of
18 members—four secondary teachers, twelve university professors, and two school
inspectors—, and had a threefold task: (1) to give advice about new subjects in the
curriculumwhich could be first piloted in schools; (2) to produce ideas for in-service
courses for senior teachers to update their mathematical knowledge; (3) to investigate
whether a special program could be made for mathematically gifted students.

14.3 The Influence of New Math

The first activity of the CMLW was to organise courses for teachers about ‘modern
mathematics’ giving a mathematical background to intended new subjects in the
mathematics curriculum for schools. Most of the topics of these courses were influ-
enced by the international New Math movement. The first concern of the CMLW
was to raise mathematical competence in line with the demands created by New
Math. In the second phase, didactical meetings were organised about how to teach
New Math at school. In Euclides and during meetings with mathematics teachers,
there was much discussion about the pros and cons of New Math. Not everyone was
convinced about its blessings. For example, the logician and university professor
E. W. Beth2 was very sceptical about teaching topics like set theory to 12-year-old
students. Freudenthal was also sceptical about the New Math movement, but the
majority of the CMLW members kept up with the spirit of the times.

1Commission Modernisation Mathematics Curriculum.
2E. W. Beth was the son of H. J. E. Beth who was the chairman of the 1926 curriculum committee.
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From 1965 on four experiments with New Math were started in a small number
of secondary schools. New subjects like parametrised curves (in New Math terms:
images of functions from IR to IR2) and differential equations were proposed. Much
attention was given to limit and continuity. In traditional textbooks, the continuity of
a function f in a was defined from the concept of limit, but now the main idea was to
start with continuous function (for example defined in a topological style with open
environments) and then introduce the limit, say of

�a(x) = f (x) − f (a)

x − a
for x → a

as the value that makes the function �a continuous in a.
A textbook that appeared in the years after the introduction of a new curriculum

for calculus in 1968, started with the limit concept for infinite sequences which led
to the definition: If for every sequence (x0, x1, x2,…)3 in a reduced open interval
around a with lim

n→∞ xn = a we have lim
n→∞ f (xn) = b, then we say lim

x→a
f (x) = b.

And in this book, this then led to the ‘old-fashioned’ definition of ‘f is continuous
in a’.

Fortunately, there were also positive experiences. The most spectacular extension
of the calculus program, the teaching of elementary differential equations together
with slope fields turned out, beyond all expectations, to be attainable in the classroom.

A didactical point of discussion in those days was the introduction of more-or-
less autonomous differentials. The language as introduced by Leibniz was and is still
very effective, but did not fit well in the style of New Math. Some purists wanted
to skip the use of differentials, but for example Freudenthal posed that teaching
calculus withoutmaking students familiar with differentials is unacceptable. Another
university professor, A. C. M. van Rooij wrote:

The learning of differentials in school is a tricky question. The calculations with them is
easy, but to understand what they really are, the student must have a rather high level of
abstraction. (Van Rooij, 1982, p. 81) (translated from Dutch by the author)

The dilemma of using differentials in calculus is that it may lead to a mechanistic
style of working.

It makes no difference what meaning we attach to the differentials, or where we attach any
meaning whatever to them. If we define appropriate rules of operation for them and if we
employ these rules properly, it is certain that something reasonable and correct will result.
(Klein, 2004, p. 215)

If we say that instead of d
dx f (x) = f ′(x) we may write d f (x) = f ′(x)dx and

reduce the question of differentials to a grammatical one, a real understanding of
differentials is not necessary. For example, to treat (in)definite integrals without the
use of differentials is needlessly ineffective.

3Undoubtedly the introduction of the limit by sequences fits our intuition best. The difficulty with
the step to the ‘limit (or continuity) of a function’ is the word every, because it asks for a proof that
shows that no exception is possible.
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In the Netherlands, in 1967 the first steps were set towards a reform of math-
ematics in the higher grades of secondary school. The initial plans included two
mathematics strands for Grade 11 and 12 of the pre-university level, which were
Mathematics I (calculus and statistics) and Mathematics II (geometry and linear
algebra). Mathematics I became compulsory for students who wanted to study exact
sciences (including econometrics), agricultural sciences andmedical sciences.Math-
ematics II aimed at students who were interested in a wider scope of mathematics.
The calculus part ofMathematics I turned out to bemuchmore extensive than the pro-
gramme of 1958. Logarithmic, exponential and cyclometric functions were added,
as well as parametric curves.

The results in the first new examinations in 1974 were dramatic. The main cause
was not the curriculum, but the fact that many more disciplines at university level,
like economics, psychology, sociology and even history, required students to follow
Mathematics I in secondary school, which was never meant to be a preparation for
students in these disciplines. So, in the late 1970s the conclusion was drawn that
two new programs were needed for the pre-university level in secondary education:
Mathematics A for students who were going to study economic and social sciences
andMathematicsB for studentswhowere going to study exact and technical sciences.

14.4 The HEWET Project: A Small Revolution
in Pre-University Secondary Education

The Dutch Ministry of Education commissioned the development of two new math-
ematics programmes for pre-university secondary education and started the HEWET
project.4 In fact, this development was meant to be only a simple reallocation: statis-
tics and probability (which were in Mathematics I), some parts of linear algebra
(which were in Mathematics II) and some parts of differential calculus (which were
inMathematics I) wouldmove toMathematics A. Analytical geometry (whichwas in
Mathematics II) and the more advanced parts of calculus, including integral calculus
and differential equations (which were inMathematics I), would move toMathemat-
ics B. To work on these ideas the HEWET working group was set up. This group
existed of two secondary school inspectors, four university professors (two of them
representing the exact and technical sciences, the other two representing economic
and social sciences), one didactician and two secondary school teachers. The group
was advised by threemembers of the IOWO (Institute for theDevelopment ofMathe-
maticsEducation), the predecessor of theFreudenthal Institute,M.Kindt, J. deLange,
and G. A. Vonk, the first two of whom would later be responsible for developing
new materials for classroom experiments with the new topics and new didactical
approaches. A concept version of the HEWET report appeared in 1979 and after
a nationwide consultation of the secondary and higher educational sector the final

4Herverkaveling Wiskunde I en II (Re-allotment Mathematics I and II).
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report appeared in 1980. With respect to calculus, the report proposed for Mathe-
matics A to include applied differential calculus (no integrals), and for Mathematics
B it was proposed to include calculus as it was within Mathematics I.

The need for careful experiments was clear, since the proposed programme for
Mathematics A was rather revolutionary because of the applied character preparing
students for being able to use mathematics in economic and social sciences. In 1981
two pioneer schools started, with an experimental written final examination in 1983.
From that year on, ten new schools joined the project, one year later the next forty
schools started and in 1985 the remaining (circa 430) schools followed. The first
national written final examination was in 1987.

The following elements of calculus were expected to be meaningful, relevant and
within reach of Mathematics A students:

– Trigonometric functions as models for periodic phenomena and trends
– Exponential and logarithmic functions as models for types of growth
– The derivative of a function as a rate of change in a variation of contexts.

Generally spoken, the intended approach was contextual and informal.
As an introduction to this program, three units for Grade 10 were designed at the

IOWO, meant as a preparation for both Mathematics A and B. The (translated) titles
were respectively: “Logarithms and Exponentials”, “Functions of Two Variables”
(both designed by J. de Lange) and “Differentiation 1” (designed by M. Kindt). The
last unit was an introduction of the concept of the derivative of a function and had
as its subtitle “A Way to Track Changes”.

This last unit consisted of eight chapters: A Changes; B Time, distance, speed;
CMeasuring slopes;DSlope functions; EFree fall; FDifferentiation;GPolynomials;
H Maximums and minimums. In one of the meetings for teachers, one participant
said that you could skip the first five chapters, because in the F chapter the ‘real stuff’
began. For this teacher differentiation was merely a type of algebraic trick. And so
it was for many students at that time. The idea behind the unit was just to give a
broadly oriented entrance to differential calculus. The unit was translated in German
and after some adaption used in a number of schools in Berlin. The students there,
like those in the Netherlands, gave the course a very positive evaluation. A student
wrote: “We have never had so much fun with mathematics before.”5 In the unit (see
Kindt, 1982, p. B7), a text about the fastest animal in the world (Fig. 14.2) was used.

This text was followed by only one question:

Fig. 14.2 The fastest animal

5Translation from German by the author. Literally the student wrote: “Wir haben niemals vorher so
viel Spass gehabt mit Mathematik.”
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A cheetah is woken up from his afternoon nap by the sound of horse’s hooves. He decides
to pursue the horse at the moment that the horse has a lead of 200 meters. Does the cheetah
overtake the horse?

In addition, the following hint was given:

You may assume that the cheetah reaches his top speed after 300 m.

This was followed by a figure of empty graph paper, which suggested tackling
the problem by drawing a graph. Most of the students tried to draw a time-distance
graph for both animals. The cheetah graph had to be inferred from the brief data in
the text and by realising that a variable velocity induces a curved graph. There were
also students (and teachers) who started with a time-velocity graph.

In an article that Freudenthal (1979) wrote about this problem, he focused on the
hint that the cheetah reaches his top speed after 300 m and compared three models
for the initial phase of the cheetah’s run (Fig. 14.3).

Each of the areas of the three squares represent a distance of roughly 520 m. The
first diagram shows a velocity which grows slowly to then rise rapidly. The start-up
distance may be estimated as 65 m (area below the graph is about 1

8 of the square).
The second diagram shows a spectacular acceleration in the beginning, but it takes a
relatively long time to reach top speed. The corresponding distance is about 7

8 of the
square, so 455 m. The third model (uniform acceleration) gives a distance of 260 m.
The hint of 300 m is not so strange, because the acceleration will not be zero at once
in the last second. So, the time-velocity graph will be like the third one, but branch
off more smoothly to the highest point. In his article Freudenthal proposed to delete
the hint, to make the task even more open.

The examples used in the teaching units developed in the HEWET project (18
in total) inspired the authors of commercial textbooks. So did the cheetah problem.
But contrary to the idea of Freudenthal, the authors extended the data and designed
many sub-questions or introduced formulas for the time-distance function. One may
say that this was a general trend: the textbooks which appeared after the nationwide
introduction ofMathematics A were much more structured and less challenging than
the units which were successfully used in the experimental phase.

Fig. 14.3 Three graphs of the initial phase of the cheetah’s run
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The general conclusion about the content of Mathematics A was positive (De
Lange & Kindt, 1984; De Lange, 1987). The strand of applied algebra was judged
as the most adequate part, because of the relative simplicity of the mathematical
structures and the possibility for the students to model in an autonomous way. More-
over, the main part of this strand had to do with discrete mathematics, which is
more concrete—not always easier—than the continuous mathematics. The strand
of probability and statistics was undoubtedly very useful in a lot of disciplines and
there were more than enough interesting and realistic contexts available to teach.
The crown on the course was the strand of testing hypotheses and this strand turned
out to be attainable for the majority of the students. The strand of applied calculus
was seen as a less successful part. Especially differential calculus with its many rules
demanded much more mathematical endurance of the Mathematics A student than
the other two strands. Moreover, it seemed to be very difficult to design meaningful
contexts for the Mathematics A level in which students could make analytic mod-
els by themselves. The common practice in the national written final examination
was (and still is) that for the calculus part a mathematical model in the form of an
algebraic formula is given, accompanied by a lot of (often simple) questions, but
this is done without challenging the students to do a critical investigation of why
this formula would be a good idea and without offering students opportunities to
construct or adapt a formula.

All in all, one can say that the introduction of Mathematics A thoroughly influ-
enced general ideas about mathematics education. Teachers who thought before that
it would not be possible to design written final examinations in more-or-less real-
world contexts, were now more-or-less convinced about the feasibility of the RME
approach, and in the commercial textbooks for secondary education one tried to
implement this approach increasingly.

14.5 Discrete Calculus in Secondary Pre-Higher-Vocational
Education

After the introduction of Mathematics A and B in the Dutch mathematics curriculum
for secondary pre-university education (VWO), the Ministry of Education decided
that there should also be Mathematics A and B in the Grades 10 and 11 of secondary
pre-higher-vocational education (HAVO) as well.

Calculus in HAVOMathematics Bwould be in the same spirit as calculus in VWO
Mathematics A, but in HAVO the applications would be particularly inspired by the
exact sciences. For HAVO Mathematics A it was decided not to include differential
calculus, but rather to choose for a discrete approach of studying change. The strand
was called TGF (tables, graphs and formulas). In this strand, the so-called ‘difference
diagram’ was introduced as a tool to study changes. The teaching experiments with
this approach showed no conceptual problems with this idea. The difference diagram
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Fig. 14.4 Difference diagrams for studying change (Roodhardt, 1990, p. 23)

turned out to be a surprisingly powerful instrument. One particular good exercise was
the following matching problem (Fig. 14.4).

In this exercise students have to relate patterns in graphs to patterns of growth
(linear, progressive, degressive).Verbal exerciseswere also used tomake this relation.
The exercise was preceded by another activity (Fig. 14.5) that was inspired by a
newspaper article.

An illustration of a problem in the experimental written final examination of 1989
for Mathematics A was cast in a realistic context and required conceptual reasoning
about growth (Fig. 14.6).

This example appeared in the final examination for the experimenting schools
and many students could solve this problem correctly. One student even formulated
his answer, using good arguments, in the form of a letter to the farmer! Here, we
have to realise that this mathematics programme was not meant for the most gifted
students. It appeared to be possible to study the behaviour of functions in connections
with local change, with less sophisticated means than differential calculus through a
discrete and contextual approach (see also, Doorman, 2005).

The decreasing growth of crime in the Netherlands of the 
last few years has been turned into an increasing growth.
a. Which of these three pictures fits the text?
b. Write a text for the other two pictures.

Fig. 14.5 Change in crime (Roodhardt, 1990, p. 17)
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Fig. 14.6 A problem in the experimental written HAVO examination for Mathematics A
(Translation from Dutch by the author)

14.6 Calculus in Mathematics B for Secondary
Pre-university Education

In 1998 upper secondary education was reorganised again. In the last two years of
VWO and HAVO the students would now have to choose between four profiles:
Culture & Society, Economics & Society, Nature & Health, and Nature & Technol-
ogy. For the last two profiles the Mathematics B program had to be changed with
more emphasis on abstraction, modelling and reasoning. The teaching of calculus
was expected to emphasise conceptual understanding with numerical and discrete
approaches to differential and integral calculus at the cost of extensive training in
procedural fluency (Wiskunde, 1995, p. 70).

In the period1996–1999, the teamof thePROFIproject of theFreudenthal Institute
designed experimental units for calculus inMathematics B for secondary pre-higher-
vocational education. One of the main ideas learned from the experiences at this
school level was to start with the discrete concepts difference (�) and sum (�) of
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Fig. 14.7 Leibniz’s inspiration

functions or sequences. In his retrospective publication Historia et Origo Calculi
Differentialis, Leibniz looked back to his first work De Arte Combinatoria and said
that this was his source of inspiration to invent calculus (Edwards, 1979) (Fig. 14.7).

One would call this theorem the fundamental theorem of discrete calculus that
can also be visualised graphically (Fig. 14.8).

In the experimental unit (Kindt, 1997), the operators � and � on sequences were
introduced. And the theorem of Leibniz could then be formulated briefly as

Fig. 14.8 The fundamental theorem of discrete calculus
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n−1∑

k=0

�F(k) = F(n) − F(0)

which is the discrete counterpart of

a∫

0

dF(x) = F(a) − F(0)

As it is possible to calculate integrals by using one’s knowledge about the rules
for differentiation, so one can find formulas for the partial sums of a sequence by
calculating differences. By expanding (k + 1)n − kn for n = 2, 3, 4 one may deduce

n∑

0

k = 1

2
n(n + 1)

n∑

0

k2 = 1

3
n(n + 1

2
)(n + 1)

n∑

0

k3 = 1

4
n2(n + 1)2

and the last two formulas would then be used for a calculation by Riemann sums of
the areas under the curves y = x2 and y = x3.

A special example used in the experiment was the approximation of the area (A)
under the graph of y = 2x on the interval 0 ≤ x ≤ 1. The estimation

1

10

9∑

k=0

2
k
10 < A <

1

10

10∑

k=1

2
k
10

corresponds to a division of the interval in ten equal parts. Using the formula for the
partial sum of a geometric sequence, one may write

1/10

21/10 − 1
< A <

1/10 · 21/10
21/10 − 1

Then by step-by-step refinement—dividing the interval in 100, 1000, etcetera
parts—and using a calculator, one gets better and better approximations:

Number of rectangles Lower estimate Upper estimate

10 1.393272617 1.493272617

100 1.437700817 1.447700817

1000 1.442195099 1.443195099

10000 1.442645041 1.442745041

100000 1.442690047 1.442700047

1000000 1.442694584 1.442694584
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The convergence is visible and this is not an optical illusion. One can simply
show that the differences between lower and upper estimate is 0.1, 0.01, 0.001,
etcetera! This type of two-sided approximation is probably the best introduction
to the mathematical concept of limit. In fact, this is in line with the development
of calculus in history which starts with the exhaustion methods of Eudoxus and
Archimedes (e.g., Toeplitz, 1963).

Later it was noticed, looking at a chord of the graph of y = 2x starting from
the point (0, 1) and ending in a nearby point, say (0.1, 20.1), that the slope of this
chord is equal to the reciprocal of the first underestimate in the column above. This
already suggests a sort of inverse relationship between area and slope! Aside, we
know from history that Barrow—master of Newton—was the first mathematician
who discovered this remarkable relationship, but he used a geometric entrance.

Even later the slope function of y= 2x was found in a numericalway on the graphic
calculator, for example using the input y2 = [y1(x + 0.001) − y1(x)]/0.001, with
the discovery that the slope function seems proportional with the original function
(factor about 0.693). Of course, after this numerical notion, also valid for exponential
functions with other bases, came the classical algebraic explanation:

ax+r − ax

r
= ax · a

r − 1

r

so, with lim
r→0

ar−1
r = ca

it was found that d
dx a

x = ca · ax .
But what to say about the mysterious constant ca? Using numerical

approximations, one may produce a table of values in 9 decimals:

a ca

2 0.693147181

3 1.098612289

4 1.386294361

5 1.609437921

6 1.791759469

7 1.945910149

8 2.079441542

9 2.197224577

10 2.302585093

Guided by direct questions, the students could discover a number of relationships
such as c4 = 2 · c2, c8 = 3 · c2, c2 + c3 = c6 and c2 + c5 = c10. The verification of
these equalities was a good exercise in the known rules for derivation, particularly
the so-called product rule:
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Looking at the table above one may conjecture that, somewhere between 2 and 3,
there must be a base a of an exponential function, for which ca = 1, so a function
identical with its derivative. The task for the students—Grade 11—then was to find
this number in at least two decimals. Here are the solutions of two students.

Leonie came up with:

Linda started from discovering c4 = 2 · c2 and c8 = 3 · c2. The teacher had asked
her for an explanation and had given the hint to use powers of 2. This inspired Linda
to come up with:

This approximation (of e) was correct in 8 decimals! After these activities and
using the discovered property ca + cb = cab, the students could discover that ca =
eloga. This is a nice example of the principle of guided reinvention.

The above examples show that the relation between differentiation and integration
can be introduced and discussedwith discrete and numericalmethods. Thesemethods
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allow teachers and students to calculate and approach specific solutions and charac-
teristics of these solutions. Linda’s work showed that students were offered opportu-
nities to approach the value of the number e and its role in the derivative of exponential
functions. Seven calculus units for the Nature and Health profile at the pre-university
level were designed.6 These units stressed the importance of conceptual understand-
ing and relationships in calculus and illustrated how that can be realised in education
with students who are interested in science careers at pre-university level.

14.7 Back to the Future?

In the beginning of the 20th century ‘calculus’ was sometimes referred to as ‘higher
mathematics’, probablybecauseof its conceptual and technical complexity.Undoubt-
edly this was the main reason that the implementation of the calculus took so much
time. The temptation in teaching calculus is to teach it in a mechanistic way. Inter-
esting concepts are easily overshadowed by algebraic techniques, and the ability to
apply calculus in more-or-less realistic situations will then be very low. To illustrate
this dominance of algebra I give you now two examples of reactions from classroom.

Example 1. Teacher: “Last year you learned something about differential calculus, what do
you still remember of this?” After a short silence one student reacted: “x squared became
two times x.”

Example 2. Student: “Differential calculus, I do understand it well, but what does the product
rule have to do with it?”

The first example shows that for many students their view on differential calculus
is a series of algebraic tricks, not a way to study processes of change. In contrast, the
second example shows that after a careful conceptual approach–the teacher was a
really good one–the algebraic aspectwas experienced as a foreign element. Balancing
conceptual understanding and algebraic techniques was, is and will be the dilemma
in teaching calculus, perhaps more so than in any other mathematical topic. In an
RME approach, such as was realised in the HEWET project, a long conceptual
introduction preceded the simplest algebraic rules. Activities involving finding slope
functions by measuring slopes using a ruler anticipated the drawing of tangents and
calculations with difference quotients. The students were offered the opportunity to
discover that the slope function corresponding to a parabola was a straight line. At
that time, there was no graphic calculator nor much educational software, but with
the help of modern tools there are many more possibilities to build the concept of the
derivative in a constructive way (e.g., Drijvers et al., 1996). We have to realise that a
numerical approach combined with a geometrical one will give much more insight
than the algebraic rules, which of course have their own purpose and utility.

6Six of the units have been adapted and translated in German by a Swiss Mathematics Committee
and published by Orell Füssli Verlag Zürich in two books: Differenzieren–Do it yourself (2003)
and Integrieren–Do it yourself (2010).
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Leibniz (1684), in his very first article about calculus, propagated what he called
the ‘NovaMethodus’,7 a means to findmaximums andminimums in a great diversity
of situations. As an illustration, he gave a new proof of Snell’s refraction law. This
was a very strong argument to believe in the value of the new calculus. But nowadays,
one may object that we have calculators and computers, which after the input of an
algebraic model give us the desired result. So, one might say that the main activity
in calculus education must be to model, to mathematise change. But on the other
hand, algebra is very helpful in proving more general results, for example Snell’s
law. Of course, one can also use a symbolic calculator–nowadays still not allowed
in the Dutch national written final examination–but do we want our students to use
rules they do not understand?

At the time of the PROFI project, three main and ideal activities were formulated
for Mathematics B: modelling, abstracting and reasoning. Finding a good balance of
these activities together with the use of modern technology is the greatest challenge
for teaching calculus in a realistic way and as a human activity!
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Chapter 15
The Emergence of Meaningful Geometry

Michiel Doorman, Marja Van den Heuvel-Panhuizen and Aad Goddijn

Abstract This chapter is about a change in geometry education that took place in
the last century. We discuss the emergence of meaningful geometry in the Nether-
lands. Of course, this was not an isolated reform. Worldwide, mathematicians and
mathematics educators came up with new ideas as an alternative for the traditional
axiomatic approach to teaching geometry. Already at the end of the 19th century,
Klein had made a start with this by advocating a transformation geometry, but in
this approach the axiomatic structure still played a main role for ordering activities.
This was not the case in the work of Fröbel and Montessori who by building on
students’ intuitions and their attention for students’ development of spatial insight
were important driving forces towards a meaningful approach to geometry educa-
tion. In the Netherlands, the pioneers of such a geometry were Tatiana Ehrenfest
and Dieke van Hiele–Geldof. Freudenthal was a great promoter of their ideas. For
him, geometry is ‘grasping space’, meaning that geometrical experiences should start
with the observation of phenomena in reality. Supported by Freudenthal, from the
1970s on, experiments were carried out in the Netherlands to develop a new intuitive
and meaningful approach to geometry education, in which the focus was on spa-
tial orientation. How big the change in geometry education that resulted from these
experiments was, is illustrated in this chapter by comparing geometry problems from
two Dutch mathematics textbooks: one from 1976 and one from 2002.
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15.1 A World-Wide Change in Geometry Education

The NewMath movement which commenced in the United States around the 1960s,
andwhich controlledmathematics education for about two decades in Europe aswell,
brought about a big change in the mathematics curriculum by giving a central role
to mathematical structures based on set theory. This approach corresponded largely
with the work of the Bourbaki group that started in the 1930s with reformulating the
foundations of mathematics. Although the New Math movement is often referred to
as a result of the Sputnik effect requiring theWesternworld tomodernise its education
tomeet the demands of the upcoming technological innovations, the urge to adapt the
content of mathematics education to new developments in science and society had
already begun in the 19th century. For example, in 1872, Felix Klein pointed out the
importance of attention for structures in mathematics in his Erlanger Programm. He
advocated the unification of group theory and transformation geometry (Klein, 1872).
According to Botsch (Barbin & Menghini, 2014), Klein inspired most secondary
schools inGermany to replaceEuclideangeometrywith so-called ‘motiongeometry’.
This geometry was a simplified version of transformation geometry.

Klein seemed far ahead of the age of NewMath, in which the structural character
of mathematics was the central element. Also, by his rejection of Euclidian geometry
he was anticipating the ideas of the Bourbaki group. It was almost one century later
when during the epoch making Royaumont seminar in 1959, Jean Dieudonné, one
of the leading figures of Bourbaki, launched his famous slogan ‘A bas Euclide!’.
With his slogan Dieudonné drew attention to the outdated content of geometry in
secondary schools, still too much based on Euclid, taking geometry as the ideal con-
text for teaching the axiomatic construction of mathematics. This teaching approach
did not meet the needs of the new technical society nor the modern language of
mathematicians and scientists. In geometry, modern topics were needed, which, to
Dieudonné, included vector spaces in finite dimensions. Linear algebrawas supposed
to provide a ‘royal road’ to geometry (Choquet, 1964).

However, these ‘modern’ views on geometry teaching still had a characteristic of
the traditional approach: the structure of a mathematical systemwas still more or less
the main guideline for the learning process. Structuralism dominated mathematics
education and resulted in a view on geometry as a means to rush on to analytical
geometry, to the world of algebra describing space, and an axiomatic approach of
linear algebra. Almost no opportunities were created for students to first develop
spatial insight and to become familiar with ‘space’.

Yet newdevelopments towards ameaningful approach to geometry educationwith
attention for students’ development of spatial insight, had already been proposed
early in the 19th century, in particular by German philosophers, pedagogues and
psychologists who had been engaged in the content of mathematics education during
that era. One of themwas the German pedagogue Friedrich Fröbel (1782–1852) who
came up with a new programme for geometry education for children aged 4–14, with
his blocks, mosaics and other educational toys (Fröbel, 1826). He advocated practical
activities for enabling children to get acquainted with characteristics of geometrical
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shapes in an early phase. The work of Fröbel and also that of Maria Montessori
(1870–1952) inspired attention for spatial orientation beginning at the kindergarten
level. Choices of activities were based on educational psychological research on
spatial insight with young children, and on experiences with playing as a context for
geometrical explorations.

15.2 First Steps Towards a New Geometry Education
in the Netherlands

Following the international trend, the first steps to reform the then prevailing geome-
try educationweremade in theNetherlands as well. Inspired byKlein’s Erlanger Pro-
gramm and influenced by mathematicians like Dieudonne, from the 1960s on, text-
books containing transformation geometry (e.g., Troelstra, Habermann, De Groot, &
Bulens, 1962) were also published in the Netherlands. In this approach students were
involved in constructing and transforming shapes instead of an emphasis on analysing
given angles and triangles and reasoning about congruency. Although the importance
of building on students’ intuitions was emphasised in the introductions of these new
textbooks, the formal axiomatic structure—in this case for reasoning with symme-
try—again played an important role for ordering the activities. Figure 15.1 shows an
example of a problem that illustrates the logic-deductive reasoning underlying this
approach.

The students were expected to draw the two lines PE and QF perpendicular on
a and b, resulting in the rectangle PFQE with diagonals PQ and EF. This rectangle
has two lines of symmetry, p and q. Reflection in p shows that angle P1 equals F1

and reflection in q shows that angle F1 equals Q3. From this it can be concluded that
angle P1 equals angle Q3.

Given two parallel lines a and b and line

l. 

Prove that the angles P1 and Q3 are equal.

Fig. 15.1 Proving with transformations (from Troelstra et al., 1962, included in Groen, 2004,
p. 299)
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One of the most systematic investigations into the possibilities of transformation
geometry in the early years of secondary school was carried out by the Dutch psy-
chologist A. D. de Groot (De Groot et al., 1968). In this study, the new approach of
transformation geometry was compared to the traditional approach through a large-
scale teaching experiment involving 12- to 13-years old students who were in their
first year of general secondary education. The results showed that between the two
approaches in general no difference in performance was found and the students also
did not differ in being motivated for geometry.

15.3 Precursors of Meaningful Geometry Education
in the Netherlands

Someone who contributed significantly to introducing an approach to geometry edu-
cation with attention for students’ development of spatial insight in the Netherlands,
was Tatiana Ehrenfest (1876–1964). She was originally from Russia and lived in
the Netherlands for a long time from 1912 on. Ehrenfest had a great interest in
teaching and education and gave this interest a practical expression by organising
monthly mathematical-didactical colloquia for teachers at her house. Here, spirited
discussions were held about the, in her view, fossilised mathematics education in the
Netherlands (La Bastide-Van Gemert, 2006, 2015). Among other things, she devel-
oped an introductory geometry coursewith exercises in spatial geometry, titledÜbun-
gensammlung zu einer Geometrische Propädeuse (Ehrenfest-Afanassjewa, 1931), in
which she took geometrical phenomena as a starting point for developing geomet-
rical concepts. With this course, she enriched the domain of geometry with how
we experience space. Ehrenfest-Afanassjewa considered activities of looking along
two objects, identifying parallel lines in a classroom and lines as light beams and
determining angles, basic for an intuitive understanding of the straight line as a math-
ematical object. In her introduction of the course she motivates the importance of
such a phenomenological introduction by contrasting it with the geometrical method
that emphasises a logical-deductive approach:

DenWeg vom Chaos zum System und den Segen, welchen die systematische Behandlung des
Stoffes mit sich bringt, zeigen die Logiker nicht, und so erscheint bei ihnen “die Geometrie”,
als ein von allem Materiellen losgelostes Denkspiel, und anstatt mit Begriffen zu operieren
– welche ja nur durch eigenen Abstraktionsakt aus eigener lebendigen Erfahrung gewonnen
werden können - haben die Schüler mit Namen und Zeichnungen zu tun, die sie oft an nichts
Bekanntes erinnern (Ehrenfest-Afanassjewa, 1931, p. 5, italics in original).

The road from chaos to system and the blessing resulting from the systematic dealing with
the learning content, is not shown by the logicians. Therefore, for them “Geometry” becomes
a game with thought objects that are isolated of all concreteness, and instead of operating
with concepts – which can be acquired through the act of abstraction of one’s own living
experiences – students have to work with names and drawings which do often not refer
to anything they know (Ehrenfest-Afanassjewa, 1931, p. 5; translated from German by the
authors).
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Halfway through the 20th century, a further impetus to change geometry education
in the Netherlands came from the couple Van Hiele (1957) and Van Hiele-Geldof
(1957) who proposed introductory activities with concrete materials like folding,
cutting, gluing, and paving. As an example, Dieke van Hiele-Geldof started one
of her geometry courses with physical cubes. She did not define a cube, but gave
the students different kinds of solid cubes and cubes as wire figures of different
materials. She discussed with her 12- to 13-years-old students, who were in the first
year of the lowest level of secondaryvocational education, similarities anddifferences
between these objects, which led to an activity of constructing cardboard cubes. In
this process, the students became acquainted with the geometrical objects and with
fundamental notions of concepts such as right angle (defined by folding). During
subsequent analyses of the objects, other characteristics, patterns and symmetries
were identified and relationships were constructed (Van Hiele-Geldof, 1957). This
example illustrates a learning process which completely differed from starting with
a deductive structure of mathematics. The process that the Van Hieles advocated,
passed different levels of understanding, labelled as visualisation (Ground Level 0),
analysis (Level 1), informal deduction (Level 2), generalisation and the construction
of a formal system of relationships and deduction (Level 3), and rigor (Level 4) (Van
Hiele, 1957).

A next step towards a meaningful geometry education was made by Freudenthal
who was involved with the work of the Van Hieles. Freudenthal highly appreciated
and admired the analysis of classroom observations by Dieke van Hiele and the
intuitive approach she promoted in introductory geometry education (LaBastide-Van
Gemert, 2006, 2015). Freudenthal was also fond of Ehrenfest’s Übungensammlung,
although he did not agree with the deductive system of teaching geometry that he
initially recognised in it. Later however, he understood better what a masterpiece
Ehrenfest’s publication was (Freudenthal, 1987). For him the relevance of her work
was her plea for a resource-based approach to teaching geometry and for the need for
an explorative and student-oriented approach to geometry which can be described
as ‘watching, acting, thinking and seeing’. Geometrical experiences start with the
observation of a phenomenon in the surrounding environment. After that you make a
model or a drawing to describe the phenomenon with geometrical means. Reasoning
about these means will help you to develop mathematics and to understand the
modelled phenomena. Freudenthal labelled the research underlying these activities as
didactical phenomenology, and he summarised the resulting geometrical experiences
and activities more concisely with the term ‘grasping space’.

[G]eometry is grasping space (…) that space in which the child lives, breathes and moves.
The space that the child must learn to know, explore, conquer, in order to live, breathe and
move better in it (Freudenthal, 1973, p. 403).

By saying this, Freudenthal criticised geometry education as the teaching of struc-
tures, an approach that was inspired by New Math and that isolated geometry from
reality. He emphasised that apart from some applications of the Pythagorean theo-
rem and some measurement problems about area and volume, the criterion of use
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entirely failed in geometry (Freudenthal, 1973). As an alternative, he and his col-
leagues startedworking on developing a geometry education that later became known
as ‘Realistic Geometry Education’.

15.4 The Early Experiments: The Focus on Spatial Insight

From the 1970s on, experiments were carried out to develop a new intuitive and
meaningful approach to geometry education (De Moor & Groen, 2012; Groen & De
Moor, 2013). These experiments were carried out in educational practice through
working with teachers and students in real classrooms. Initially, the plan was not to
build a learning line for geometry, but to look for themes and problems that result in
meaningful mathematical activities.

The designers of this new approach to geometry were focussed on developing the
students’ understanding of and skills in working with traditionally familiar subjects
such as angles, area, symmetry, and the Pythagorean theorem. The intention was
to find empirical support for a phenomenological approach to these subjects. To
highlight the new character of the geometrical activities, the term ‘vision geometry’
was used. The experiments in class were aimed at the development of reasoning
with vision lines, vision angles, sighting, rays of light, projecting, shadowing and
perspective. In particular, this latter subject, perspective, was considered to play a
central role in learningbasic geometrical concepts and reasoning and thedevelopment
of a deeper spatial insight. The set-up of the designs was not axiomatic, but based
on phenomena and experiences in daily life.

15.4.1 Five Examples of Vision Geometry

The following examples are from tasks designed and tried out during the years 1970–
1980. They all reflect the importance of starting with three-dimensional problem
situations to evoke and further develop meaningful geometrical reasoning.

15.4.1.1 The Task ‘The Singer’

The first example is the task ‘The singer’ (Fig. 15.2), which was developed, tried out
and finally published in a geometry unit for lower secondary education (Schoemaker,
1980). The task is about a singerwhose performance is filmed by four cameras. In this
task, students can explore the way an object is seen from a certain viewpoint, which
is one of the core ideas of the geometry of vision. Because the task fits well within
the range of daily available student experiences and intuitions, there was not much
need for further explanation. The experiment confirmed that the task is indeed easily
accessible for students. Not even a question was needed to put the students to work.
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Fig. 15.2 Which image comes from which camera? (Schoemaker, 1980, p. 24)

The students immediately started connecting cameras with the images displayed
on the four screens in the control room and they easily determined which camera
saw the back of the singer and which camera had the slightly less decent look at
the armpit. Deciding which of the four cameras were responsible for the two other
images required more advanced reasoning, but the two easy images gave the students
a good basis to find which cameras went with the remaining images.
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15.4.1.2 The Task ‘Rabbits Behind a Lighthouse’

The second example is the task ‘Rabbits behind a lighthouse’, which is about a boy
walking in the dunes (Fig. 15.3). The students were asked whether the boy can see
(some of) the rabbits behind the lighthouse, and whether that number changes when
he is walking towards the lighthouse. The task evokes the need for drawing lines
from the boy to the lighthouse. Students are expected to experience that drawing
these lines is difficult in the presented figure and that a top view of the situation
would be helpful to be able to decide which rabbits can be seen.

The tasks ‘The singer’ and ‘Rabbits behind a lighthouse’ probe to what extent
exploring reality—investigating what we see and how we see things—can be used as
a context for geometry. The geometry that emerges is related to becoming aware that
space can be projected on a plane, that vision lines and different views of a situation
can be used for explanations, and that drawings like top views and side views with
vision lines are important tools for reasoning (Goddijn, 1980b).

15.4.1.3 The Task ‘Tower and Bridge’

The third example is the task ‘Tower and bridge’ (Fig. 15.4). This task further elab-
orates the need for constructing vision lines and reasoning with these lines when
a particular situation is shown from another view. This task was used in an exper-
iment for introducing scale and geometrical reasoning in a 3D context (Goddijn,
1979; Schoemaker, 1980). The task was meant to create opportunities for students

Fig. 15.3 Can he see any rabbits? (Schoemaker, 1980, p. 16)
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Fig. 15.4 What is higher, the tower or the bridge? (Goddijn, 1979, p. 2)

to recognise the connection with situations in reality, how they can question them,
and how they can use geometry to explain phenomena.

In the left picture, the bridge seems higher than the church, while in the picture
on the right the church is higher than the bridge. By constructing a side view of
this situation and drawing triangles based on vision lines students can explain this
phenomenon and argue that the church must be higher than the bridge. This example
shows again how the teaching and learning of geometry can be a constructive and
creative activity and that the geometry that focusses on grasping space starts with
looking, analysing and creating drawings like top views or side views and the vision
lines as tools for explaining phenomena of vision.

15.4.1.4 The Task ‘Shadows of a Cube’

In the fourth example the geometry also comes with just looking. This ‘Shadows of
a cube’ task (Fig. 15.5) is about the polygons that can be created from projections
of a cube. The question asked students was, what kind of shadows a cube can have
(Goddijn, 1980c). It is obvious that a square must be possible, and a rectangle is also
not too difficult. But what other polygons can be created? Can you have a pentagon,
hexagon or heptagon as a shadow? Explore and explain.

15.4.1.5 The Task ‘Shadows from the Sun and a Lamp’

The last example is the task ‘Shadows from the sun and a lamp’. This task is also
about shadows and addresses different projection methods caused by two different
light sources. On the left side of Fig. 15.6 it is night and the street lamp is on. On the
right side, it is daytime and the sun is shining. In both cases shadows of posts around
the lamp need to be created. Students are asked to describe and explain differences
and similarities between the shadows created by the sun and by the lamp.
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Fig. 15.5 What kind of shadows can a cube have? (Goddijn, 1980c, p. 20)

Fig. 15.6 The different shadows (Goddijn, 1980c, pp. 12–13)

This task illustrates the potential of explorative activities with vision lines, rays
of light, projecting, shadows and perspective (see also Goddijn, 1980a). One can
also speak of an ‘intuitive geometry of the straight line’. The principles of ‘parallel
perspective’ and ‘central perspective’ and reasoning about what you see and how or
why you see it, are the core of this vision geometry. By tasks like these, students are
given the opportunity to experience that straight lines of light are the central elements
for understanding shadow. Reasoning with these lines in different views, properties
of bundles of lines like ‘being parallel’ or ‘all intersecting in one point’ come to
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the fore as natural tools for reasoning in this context. Students are expected to truly
experience the characteristics of these situations by experimenting with parallel light
beams (sunlight) and a central light source (a lamp). This could intuitively lead to a
base for an understanding of invariant characteristics of the two perspective methods.

15.4.2 What These Tasks Have in Common

All foregoing tasks show an approach to geometry education in which fundamental
geometrical insights are strongly connected to phenomena that students can expe-
rience in everyday life. The tasks that are used for developing these insights are
characteristic for Realistic Geometry Education. More specifically this approach to
geometry education implies:

– Starting with ‘realistic’ problems
– Considering students as active and creative explainers of problems
– Giving students opportunities for explorative activities through which they can
further develop their geometrical intuitions andbywhichpreliminary constructions
can emerge

– Elicitingmathematisation in students by focussingon the development of ‘situation
models’ like vision lines which bring the students from the informal to the more
formal geometry.

We can conclude that these characteristics are in line with the ideas of Ehrenfest-
Afanassjewa (1931). In her introductory geometry course with exercises in spatial
geometry she also tried to have students develop geometrical concepts from their
own living experiences and to prevent that students would work with names and
drawings that do not refer to something they know.

15.5 A Change in Geometry Education: Geometry
Problems in 1976 and in 2002

The experiments that have been carried out since the beginning of the 1970s differed
hugely from the then prevailing approach to teaching geometry. These experiments
brought about a big change in geometry education. Therefore, there is a sharp contrast
between geometry as it was offered in textbooks in the 1970s and geometry in current
textbooks. Geometry became a discipline that was no longer isolated within the
world of mathematics, but connections were made to the daily life situations of
students. For example, an important attainment target for students in the lower grades
of secondary school was: Students can interpret, describe, spatially imagine and
create two-dimensional representations of spatial situations, such as photos, sewing
patterns, maps, plans, and blueprints (OC&W, 1997).
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What this means for the daily practice of teaching and learning geometry and how
this differs from the previous approach to teaching geometry comes clearly to the
fore when a textbook series from, for example, 1976 is compared with a more recent
one that is published in 2002. The first textbook series is Moderne Wiskunde voor
Voortgezet Onderwijs written by Jacobs et al. (1976). The second textbook is the
seriesModerne Wiskunde written by Van der Eijk et al. (2002). For the comparison,
we took the books for Grade 7, which aremeant for the first year of secondary school,
and we chose the topics: (a) introduction to 3D shapes, (b) location, in particular the
introduction of coordinate systems, and (c) reasoning with lines and angles. Due to
space limitations, we can only give a few examples which never will do full justice
to the two carefully designed textbook series. Nevertheless, the three examples we
provide give a clear impression of the changes that have taken place at the end of the
twentieth century in the Netherlands.

The first example is about 3D shapes. As a start for this topic, in the 1976 textbook,
the students are shown drawings of two kinds of boxes (Fig. 15.7). The drawings are
used to introduce the mathematical terms that describe the elements of 3D shapes
(faces, vertices and edges) and characteristics of them. One of the following assign-
ments for the students is to list the edges that are parallel to each other and to learn to
draw the mathematical shapes on grid paper. In contrast, the 2002 textbook focusses
on providing opportunities to students to explore and analyse shapes that they can
see in daily life. Students are stimulated to figure out all kinds of characteristics of
the shapes. For example, which objects can roll and what are the similarities and
differences between the sides of each of the shapes?

The second example is about the topic of location. Figure 15.8 shows how dif-
ferently coordinate systems are introduced to students in 1976 and in 2002. In 1976,

Jacobs et al., 1976, p. 7 Van der Eijk et al., 2002, p. 166

Fig. 15.7 Introduction to 3D shapes



15 The Emergence of Meaningful Geometry 293

Jacobs et al., 1976, p. 107 Van de Eijk et al., 2002, p. 64

(a)

(b)

Fig. 15.8 Introduction to coordinate systems

the idea of a coordinate system is posed as a way to organise a plane presented as a
grid. The accompanying text in the textbook introduces the students to the language
of a coordinate system:

Start counting from the origin: first seven lines to the right, then four up. We arrive at point
P. […] The pair of numbers (7, 4) are called the ‘coordinates’ of P.

Next, they have to locate other points following a similar recipe of counting lines
to the right and up starting at the origin. In the 2002 textbook, the introduction to
coordinate systems is preceded with activities that are connected to the need for such
systems. Students are provided with problems in which they can use a coordinate
system for reasoning about locations in daily life situations. In the problem from the
2002 textbook, the context of seating people in a theatre is used. The students are
asked (a) to figure out where the seats are when you have bought tickets that tell you
the chair number and the row number, and (b) to determine what information will be
on the tickets when you are seated on the two coloured locations on the floor map of
the theatre.

The third example illustrates the differences between the introduction in both
textbooks of reasoning with lines and angles. In the 1976 textbook (Fig. 15.9 on the
left), the students have to explain that triangles ABC and CDA are congruent.

In the 2002 textbook (Fig. 15.9 on the right), the topic of reasoning with lines
and angles has changed into reasoning about vision lines and angles starting in 3D
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Jacobs et al., 1976, p. 126 Van der Eijk et al., 2002, p. 14

Fig. 15.9 Reasoning with lines and angles

contexts. Doing geometry is not limited to reasoning with lines and angles in the
plane, but can also start with spatial situations that refer to reality. The students are
provided with a picture showing the top view of a room in which a boy and a girl are
sitting and showing a garden where there is a cat and two birds are flying around.
In the room, there are two windows. The girl who is sitting on a sofa warns that the
birds are in danger, but the boy does not understand her. The students are asked to
explain this. The purpose of the problem is to introduce students to a situation which
they can ‘organise’ with geometrical means. The students are asked to construct top
and side views and to draw vision lines and angles in them that can be used to explain
what is seen and how it is seen in reality.

Another remarkable difference between the 1976 and the 2002 textbook is how the
topics are ordered. The 1976 textbook starts with teaching the names of 3D shapes
on page 7 (see Fig. 15.7). Many pages later, on page 107 (see Fig. 15.8), this is
followed with the introduction to coordinate systems and finally, from page 126 (see
Fig. 15.9) on, reasoning with lines and angles in the plane is addressed. In contrast,
the sequence in the 2002 textbook is the other way around. Here, the introduction to
reasoning with vision lines and angles is situated in the beginning of the textbook,
on page 14 (see Fig. 15.9). Later, on page 64 (see Fig. 15.8), coordinate systems are
introduced with reference to coordinate systems in various real situations. Only in
the end, on page 166 (see Fig. 15.7), spatial shapes are explored and geometrical
terms for describing these shapes are introduced.

Although in the 2002 examples many of the original ideas for a more meaningful
approach to geometry education that were developed in the years 1970–1980 can be
recognised, the ideal of geometry as a real constructive activity appeared to bedifficult
to implement in textbooks. The design of rather closed tasks is more feasible in
textbooks than having open tasks that ask for classroom experiments and discussion.
Take, for example, a task that deals with the concept of vision angle. Getting a
good understanding of this concept requires that it is really experienced through a
whole class activity and interactive discussion in which so-called ‘why-questions’
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are asked. However, such questions are often missing in textbooks. Also, in class,
attention is seldom paid to reasoning with vision lines and demonstrating their use.

The task that mostly reflects the ideas behind the experiments that started in the
1970s is the task on the right in Fig. 15.9, where the students are provided with a top
view of a room and an adjoining garden where birds seemed to be in danger. The
power of this task is that the students are offered the opportunity to geometrically
organise the situation to understand and know for sure what is going on. According
to Freudenthal (1971), this so-called ‘local organisation’ is the way to develop the
concepts and reasoning schemes and has the potential to create the need for axioms,
definitions and a logic-deductive system. A further example of this idea is presented
in the next section.

15.6 An Example of Local Organisation: The Nearest
Neighbour Principle

One of the reasons for teaching geometry at secondary school is that the deductive
system of definitions, axioms and theorems offers an excellent context for students to
experience the mathematics of proof, of being sure and of being creative. However,
it requires some maturity of the students to really value and use the very precise def-
initions of geometrical objects and to understand which constructions are allowed.
Therefore, we think it is appropriate to deal with this formal geometry with students
who are in the higher grades of pre-university secondary education andwho have cho-
sen a science or technology track. Nevertheless, for these students as well, geometry
should not start on a formal, abstract level, but with problems that are experienced by
the students as real problems and that create the need for further formalisation. The
local organisation at the problem level that is necessary for this can be considered
as a geometrical activity to re-invent principles of Euclidean geometry. How this
works is illustrated by the following example which originates from a unit designed
by Goddijn et al. (2014) meant for students in the higher grades of pre-university
secondary education (see also Goddijn, 2017).

The task in Fig. 15.10 is part of a series that deals with the topic of the nearest
neighbour principle. The so-called ‘Voronoi diagrams’ that can be used to express
this principle have many applications that are relevant in reality; for example, in the
case of resolving territory conflicts.

To introduce the notion of the nearest neighbour principle the students are shown
a map of a desert with five water wells (see Fig. 15.10). The students are asked to
colour areas in the desert in such a way that for each possible point (e.g., point J) in
a coloured area the corresponding well should be the one that is the closest to that
point.

This situation is expected to evoke strategies, like drawing circles and lines. Stu-
dents are challenged to find the borders between the areas and discover then that these
borders seem to be straight lines, which meet each other in one point. After solving
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Fig. 15.10 The task ‘Desert map’ (Goddijn et al., 2014, p. 45)

a series of such contextual problems, the focus is changed towards the mathematical
characteristics of the diagrams. One of the questions for the students is why these
lines, which are called ‘Voronoi edges’, always meet in one point (Fig. 15.11).

Initially this sounds like a useless question, because it is quite obvious for the
students that this is the case. Nevertheless, they are invited to look for an answer
to this why question. To tackle this question, they have to realise that the Voronoi
edge between, for example, the centres A and B (the wells in the desert problem) is
a set of points P for which the distance to A equals the distance to B. This can be
expressed with the distance notation d(..,..). Then, this verbal description is written
down as: d(P, A)= d(P, B). This description defines the property of the Voronoi edge
andmakes the proof that these edges alwaysmeet in one point rather straightforward.
Assume there is a point M that is the meeting point of the Voronoi edge between A

Fig. 15.11 How do three Voronoi edges meet?



15 The Emergence of Meaningful Geometry 297

and B and the Voronoi edge between B and C, then we have d(M, A) = d(M, B) and
d(M, B)= d(M, C). This means that d(M, A)= d(M, C), soM is also on the Voronoi
edge between A and C. Consequently, it can be concluded that the three Voronoi
edges meet each other in one point M.

However, this is not a full proof. Actually, in this proof it is assumed that there is
a meeting point of the Voronoi edges which we started with (the edge between A and
B and between B and C). Yet it might also be possible that this is not the case. So,
there is a gap in the argument. Students can detect this, because they already have
experienced that when A, B andC are in line, that the Voronoi edges between A and B
and between B and C are parallel and do not meet. Of course, this can be considered
as an exception. Nevertheless, again we can ask whether the proof is complete. Are
we sure that the Voronoi edges meet in all other cases?

For example, if there are Voronoi edges that are curved, then it is possible that they
do not meet. So, that means that next it should be proved that the Voronoi edge of A
andB is always a straight line. This proof is difficult, because it seems so obvious that
the Voronoi edge of A and B, being the collection of all points with equal distance to
A and B, is similar to the perpendicular bisector of A and B, which is a straight line.
But does this mean that if a point is not on the perpendicular bisector of A and B,
that is, not on pbs(A, B), that then this point is also not on the Voronoi edge of A and
B.

Suppose, point Q is not on the perpendicular bisector of A and B (see Fig. 15.12).
WhenQ is on the left side of the bisector, then the line fromQ to Bmeets the bisector
in R. Because R is on the bisector it can be concluded that d(A, R)= d(B, R). As soon
as it can be established that d(A, Q) < d(A, R)+ d(R, Q), it can be inferred that d(A,
Q) < d(B, R)+ d(R, Q) and consequently that d(A, Q) < d(B, Q). This proves that Q
does not belong to the Voronoi edge of A and B. The only thing to be determined is

Fig. 15.12 Point Q is not on
the perpendicular bisector of
A and B
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whether d(A, Q) < d(A, R) + d(R, Q). The famous triangle inequality says that this
is true if A, Q and R are not on a line.

Students can experience now that there is a bottom in this process of asking
why-questions towards more fundamental elements, and that this bottom is chosen
consciously. In a course which takes distances and ‘the nearest neighbour principle’
as a topic of departure it is natural to take the triangle inequality as one of the basic
truths. However, some protest can be raised against this choice by students who
defend the Pythagorean theorem as being amore sure thing. In that case, students can
be kindly requested to derive the triangle inequality from the Pythagorean theorem.

The aforementioned example of local organisation around the nearest neighbour
principle and the Voronoi diagrams, illustrates the path from exploration to geometry
as a logic-deductive system. First, the students have to answer the question about the
three meeting Voronoi edges, then they have to explore the character of the Voronoi
edge and answering the question whether it is similar to the perpendicular bisector,
and finally they arrive at something that is more fundamental and belongs to the
geometry as a logic-deductive system: the triangle inequality (Fig. 15.13).

This approach contrasts with a traditional approach starting with the known things
at the bottom of the logic-deductive system and building step-by-step theorems with
logical arguments. This is the path in which the teaching of geometry stays within
the logic-deductive system (Fig. 15.14).

The local organisation described in this section that emerges from the explorative
solutions of situational problems results in a reflection on the kinds of definitions
that are needed to be able to prove theorems and to establish a strong foundation
for (deductive) reasoning. That process guides students from situational problems
into the world of geometry and supports them in the development of heuristics for
searching for answers to why-questions.

Fig. 15.13 The path from exploration to finding an underpinning argumentation (Goddijn, 2017,
p. 30)
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Fig. 15.14 The path from axioms to proving statements (Goddijn, 2017, p. 30)

15.7 Final Remarks

In this chapter, we have tried to shed light on the change that took place in the
Netherlands in which an axiomatic approach to teaching geometry was gradually
superseded by an intuitive and meaningful approach focussed on spatial orientation.
Characteristic of the reformed approach, that in the Netherlands later became known
under the term ‘Realistic Geometry Education’, is that students are introduced to the
world of geometry (the language, the objects and the constructions) by providing
them with tasks in 3D contexts that can elicit their intuitive geometrical reasoning.
Starting geometry education by developing spatial intuition and ‘grasping space’ was
very much supported by Freudenthal (1973) and is exactly at the heart of the ideal
of Ehrenfest-Afanassjewa (1931). The result of this reform is that in the Netherlands
geometry education nowadays mostly starts with an intuitive introduction (see, e.g.,
De Lange, 1986; De Moor, 1991; Van den Heuvel-Panhuizen & Buys, 2008), after
which it continues in a context-rich course for 12 to 16-year olds (see, e.g., Goddijn,
1991), ending in reflections ondefinitions and axioms, that is, geometry as a deductive
system, by the end of secondary school (see, e.g., Goddijn et al., 2014).

What needs to be stated here is that the reformed approach not onlymade geometry
more meaningful for students, but that this change also widened the scope of the
geometry trajectory both in terms of students involved and topics. On the one hand,
due to the intuitive introduction some topics, such as vision lines, can now already
be dealt with in primary education or even earlier. On the other hand, older students
who have reached a certain mathematical maturity can be provided with meaningful
imaginable contexts that can be organised locally which gives them access to further
learning towards more formal geometry. In this way, at the end of the geometry
trajectory, a topic like proofs can become interesting and intriguing formore students.

Furthermore, the change in approach also implies that the structure of the geom-
etry trajectory has changed. Traditionally, structure in a teaching-learning trajectory
for geometry was provided by a deductive system startingwith formal definitions and
basic axioms. This deductive system also dominated the structure of the textbooks,
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whether theywere based onEuclid or on transformation geometry. The traditional tra-
jectory introduced students into a mathematical world without developing their intu-
itions about this world. Freudenthal and his collaborators criticised this approach to
geometry education that is based on geometry as a logic-deductive system. Freuden-
thal (1973) called this an anti-didactical inversions of learning sequences. Thismeans
that this approach takes the final state of the work of mathematicians as a starting
point for mathematics education. As an alternative for such an inversion Freudenthal
advocated that mathematics education should take its starting point in mathematics
as an activity (Freudenthal, 1973, 1991). For him the core mathematical activity was
mathematising, that is, organising from amathematical perspective. Finally, 45 years
after Freudenthal wrote his famous paper ‘Geometry between the devil and the deep
sea’ (1971), the experiences in the past decades have shownwhat Realistic Geometry
Education can offer students at all educational levels.
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Chapter 16
Testing in Mathematics Education
in the Netherlands

Floor Scheltens, Judith Hollenberg-Vos, Ger Limpens and Ruud Stolwijk

Abstract Mathematics testing in the Netherlands focusses on informing schools,
teachers, and students about student performance for both formative and summative
purposes. The tests are used to monitor whether educational objectives have been
achieved and whether content-specific standards have been mastered by the students.
In our chapter,we describe the content and objectives of the different national primary
and secondary standardised tests. The focus is on the primary function of these tests,
but their secondary function where tests are used for accountability is also discussed.
In general, the tests are classified into four types: tests to adjust instruction; tests to
evaluate proficiency and make decisions about students; tests to evaluate proficiency
and make decisions about classes and schools; and tests to evaluate proficiency
and make decisions about the quality of the educational system. We show that in
practice these types often blend together, as test results are aggregated into class- and
school-based indicators at the student level for school evaluation and accountability.
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16.1 Introduction

Dutch primary and secondary schools use a variety of tests, each with its own
function. In this chapter, we will focus on the most important mathematics tests,
describe the primary function of each of these tests, and explain how the tests are
used for accountability. In the concluding discussion section, we will identify the
difficulties associated with testing mathematics in the Netherlands.

Testing in the Netherlands focusses on monitoring whether or not educational
objectives have been achieved and whether the students have mastered content-
specific standards. These standards play an important role in allowing Dutch schools
to operate relatively autonomously and design their own programs. The standards for
different points in a student’s educational career are formulated by SLO (2008), the
Netherlands Institute for Curriculum Development, under supervision of the Min-
istry of Education. Schools need to use these standards as guidelines for setting up
the content of their educational programme. So, what schools have to teach is deter-
mined, but schools can choose how they work towards the objectives. A sample of
mathematics objectives to be achieved at the end of primary education is shown in
Fig. 16.1.

In addition to the relatively broad educational objectives that have been in place
for quite some time, more detailed content standards have recently been introduced
for basic competencies. As the minimum proficiency level of basic skills in the
Dutch language andmathematics1 in secondary education, and particularly in teacher
training programs, were considered too low, the Dutch government introduced con-
tent standards: the so-called ‘Referentieniveaus’ (Reference standards) for Dutch
language and arithmetic (Expertgroep Doorlopende Leerlijnen voor Taal en Reke-
nen/wiskunde, 2007). These standards are described for the main transition points
in the Dutch educational system: end of primary education, end of secondary edu-
cation, and end of vocational education. For each transition point, a foundation level
(1F, 2F, and 3F) and an ambition level (1S, 2S, and 3S) are specified. All students
in a particular school type or track should be able to master the foundation level,
while a substantial percentage of students should also be able to master the more
challenging ambition level.

Finally, there is a set of standards in the guiding material and test specifications
for the construction of national tests and examinations. In so-called syllabi, more
detailed descriptions are given of the objectives. These syllabi are specified by the

1In the Netherlands, a distinction is made between mathematics (‘wiskunde’) and arithmetic (‘reke-
nen’). In primary school, the term arithmetic is usually used, although this subject also covers
other mathematical domains than numbers and operations. In the chapter, we generally use the
term ‘mathematics’, and ‘arithmetic’ is used to refer specifically to the domain of numbers and
operations.
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• Students learn to count and do mathematics using estimations
• Students learn to do addition, subtraction, multiplication and division using a flexible 

strategy
• Students learn to do addition, subtraction, multiplication and division using an 

algorithm
• Students learn to use a calculator with insight

Fig. 16.1 Sample of objectives of primary mathematics

College voor Toetsen en Examens (CvTE)2 for all subjects in secondary education
and for mathematics and the Dutch language in primary education. They contain
examples of potential examination problems to indicate both the difficulty level and
the content of the national examinations and tests. Part of the mathematics syllabus
for the pre-university level of secondary education in the domain of algebra is shown
in Fig. 16.2.

The objectives, syllabi, and content standards together form the base for testing
mathematics in the Netherlands. With this framework in mind, we will now describe
the different tests used in primary and secondary education.

Subdomain B1 Algebra
The candidate is able to calculate with numbers and variables using arithmetical and 
algebraic calculations and understands the use of brackets. 

• Readily available knowledge
The candidate knows

- the concepts of absolute and relative
The candidate is able to

- make calculations with and without variables using different arithmetical 
rules, including power and roots

• Productive abilities
The candidate is able to

- use arithmetic rules to reduce or verify algebraic expressions
- calculate with ratios, percentages, and fractions including one or more 
variables
- calculate with quantities, composite quantities, and metrics and convert 
units

Fig. 16.2 Part of the mathematics syllabus for the pre-university level of secondary education for
the domain of algebra

2Board of Tests and Examinations.



306 F. Scheltens et al.

16.2 Testing Mathematics in the Netherlands

16.2.1 Dutch Education System

Figure 16.3 shows the main elements of the Dutch education system. Primary edu-
cation includes eight years, starting with two kindergarten years. Children can go to
school at the age of four. From the age of five, school is mandatory.

Fig. 16.3 The Dutch school system
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Students finish primary education around age twelve and enter secondary
education. Secondary education is tracked into three school types:

– VMBO: Pre-vocational secondary education, duration 4 years, subdivided in
different levels

– HAVO: General secondary education, duration 5 years
– VWO: Pre-university secondary education, duration 6 years.

Hereafter, students can go to different levels of further education:

– MBO: Intermediate vocational education, duration 1–4 years, subdivided in
different levels

– HBO:Higher professional education (also called ‘universities of applied sciences’)
– University.

At the end of each school level students have to reach particular achievement
standards for mathematics/arithmetic (Fig. 16.3).

16.2.2 Primary Education

The main objective in primary education, meant for students aged 4–12 is that stu-
dents (1) gain, gradually and in meaningful contexts, familiarity with numbers, mea-
sures, shapes, structures, and their appropriate relationships and calculations; (2)
learn to use the language of mathematics; and (3) are able to deal with various
sources of content, including daily life, other courses, and pure mathematics (OCW,
2015).3

At the end of primary education, teachers advise students on their secondary
education track. To confirm this advice, schools are obliged to administer a test in
Dutch language andmathematics. Schools can choose between a number of different
tests. When the teacher recommends a lower educational track than that indicated by
the test, the teacher’s advice can be reconsidered. The end of primary school test also
measures whether students have mastered the foundational (1F) or ambition (1S)
level standards for mathematics (and Dutch language).

In addition to the test’s primary function of indicating a secondary education track
or verifying the teacher’s recommendation, the aggregated test results for all students
can also be used to diagnose areas of improvement for the school (Béguin & Ehren,
2010). For example, they can be used to determine which subjects require more
attention and to determine whether measures for improvement have been effective.
Most schools use the End Primary School Test, developed by Cito, the Netherlands
national institute for educational measurement. The CvTE is mandated by the gov-
ernment of the Netherlands to ensure the quality and proper administration of these
national tests and examinations.

3Ministerie van Onderwijs, Cultuur en Wetenschappen (Dutch Ministry of Education).
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To monitor the development of primary students in a more formative way, a large
number of schools uses a monitoring and evaluation system. One commonly-used
system is LOVS4 developed by Cito. This system contains tests for different subject
domains and sub-domains (e.g., Dutch vocabulary and spelling, and mathematics)
for Grade 1–6, with assessments twice a year. There is also a system for pre-schoolers
(4- and 5-year-old children) for Dutch language and mathematics. The monitoring
system for primary school mathematics is a mixture of mostly open-ended items
covering different domains. Each assessment results in an ability score.

Because all mathematics tests in the monitoring system are correlated to each
other, teachers can compare test results to those of a previously administered test
to monitor student growth. The tests are standardised across the country, enabling
teachers to compare individual or class test results and growth with the national
average. In addition to indicating a student’s overall mathematics ability, the tests
also provide information for further analysis. For example, the teacher can analyse
whether a student scores very poorly or very high in specific areas. Is the result
for the sub-domain Numbers and Operations relatively low and for the sub-domain
measurement high, then this could indicate that numbers and operations require
additional attention.

The Cito Entrance Test for Grades 4–5 with an assessment once a year is an
alternative to the student monitoring system. This test uses a multiple-choice format.
It provides a complete overview of the student’s skills in mathematics as well as in
different sub-domains of Dutch language. In Grade 5, the Cito Entrance Test also
provides information to indicate the appropriate secondary education track. All the
aforementioned tests are also suitable for students with special educational needs.

The Cito LOVS does not assess mathematical fluency (quickly and correctly
solving problems). Therefore, schools use several other tests to monitor this aspect
of mathematics.

Along with the national standardised tests from Cito and other test providers,
schools use other tests for mathematics such as the tests included in textbooks,
various exercises, and (digital) test systems.

Appendix A shows some examples of the type of items which are incorporated in
the Cito End Primary School Test and the Cito LOVS tests.

16.2.3 Secondary Education

Mathematics is taught in different ways in the different secondary education tracks.
In the first few years of VMBO, the lower tracks of secondary education, the focus is
on acquiring insight and skills in the sub-domains of numbers and operations, shapes
and figures, quantities and measures, patterns, relations, and functions. Because of
the vocational focus of this secondary education track, it is important to provide
contexts in which mathematics can be applied: contexts related to everyday life,

4Leerling- en Onderwijsvolgsysteem (Student and Education Monitoring System).
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other subjects, further education, the workplace, and mathematics itself. In the later
years of VMBO, mathematics is only a compulsory subject in the technical sectors;
for other students it is an optional subject.

In the higher secondary education tracks, covering HAVO and VWO, of which
the highest grades are subdivided into the profiles Nature & Technology, Nature &
Health, Economy & Society, and Culture & Society, mathematics is a compulsory
subject.5 There are different mathematics courses targeted at different profiles:

– Mathematics A, targeted at the Society profiles but also permissible for students
in the Nature & Health profile; the focus is more on using mathematical methods
and on applications of mathematics.

– Mathematics B, targeted at the Nature profiles and compulsory for students in
the Nature & Technology profile; the focus is more on the abstract nature of
mathematics.

– Mathematics C, exclusively for students in pre-university education in the Culture
& Society profile; the course has some overlap with Mathematics A.

– Mathematics D, a supplementarymathematics course in the specialised or optional
component of their profile, for students already taking Mathematics B. Schools
are not required to offer a Mathematics D course.

Secondary education ends with a final examination in each subject. For most
subjects, the final examination comprises a school examination and a national exam-
ination; some subjects, such as physical education, only have a school examination.
The school examination is prepared by the individual school and is administered in
the final school year or years. Tests can be written, oral, and practical. The national
final examination is the same for all schools of a certain type and takes place at
the same time in all schools. The student’s final mark in a subject is the average
of the marks in the school and national examinations. In the Appendices C, D, and
E, examples of examination items for the various mathematics courses are shown.
These items illustrate the significant differences among the mathematics courses.

The national final examinations in the Netherlands are developed by Cito under
the supervision of theCvTE. In the lower secondary educational track (VMBO), there
are three national final mathematics examinations, differing in level. These exam-
inations exist in both a paper-based and a computer-based version. In the higher
secondary educational tracks (HAVO and VWO), there are, as mentioned before,
national final mathematics examinations for Mathematics A, B, and C for each
school level. Mathematics D has only a school examination. All the examinations
are exclusively paper-based.

For secondary education, there are also monitoring and evaluation systems avail-
able for mathematics. An example of such a system is the Cito Monitoring System
SecondaryEducation. This system contains four testswhich can be administered over
the first three years of secondary education. Students can be evaluated on a vertical
equated scale (Béguin & Ehren, 2010). Schools have to monitor student progress in a
standardisedway, but can choose (or develop) their own system of tests. In addition to

5This is not the case for students in HAVO with a Culture & Society profile.
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these standardised tests, secondary schools use—similar to primary schools—other
tests as well, such as those prepared by the teacher.

16.3 Function of Tests

The previous section of this chapter describes different types of mathematics test. In
this section, wewill describe the different functions of tests, followed by an outline of
functions for the most commonly used tests. Tests can have four different functions:
to evaluate and adjust instruction, to evaluate proficiency and make decisions about
students, to evaluate proficiency andmake decisions about classes and schools, and to
evaluate proficiency and make decisions about the quality of the educational system.

16.3.1 Tests to Evaluate and Adjust Instruction

Tests, especially formative tests, ensure that instruction can be adjusted to the
students. Tests are designed to provide information not only about the general level of
the students but also about student development. Ideally, teachers can use test results
to diagnose the specific help or instruction that students need. Examples of tests for
evaluating and adjusting instruction are textbook tests and student monitoring sys-
tems. The goal of a textbook test is to assess whether students have mastered specific
content. When a student answers (almost) all questions correctly, the teacher knows
he or she can go on in the textbook. The goal of monitoring systems is to indicate stu-
dents’ current ability levels and growth. These systems contain questions at different
levels and in all categories. Teachers can use them to identify specific students who
need more instruction or practice and which sub-domains need more attention. In
primary education, the student monitoring systems do not aim to classify students. In
practice, here the tests are used to identify students who need extra attention or extra
challenges. Both in primary and secondary school the tests of the student monitoring
systems are also used to choose a secondary education track.

16.3.2 Tests to Evaluate Proficiency and Make Decisions
About Students

Tests can also be used to evaluate students’ proficiency and make decisions about
students. Naturally, these two functions are related. In order to make decisions about
a student, the teacher has to figure out whether the student meets the requirements
for his or her grade level. This indicates a direction for student’s future education.
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There are four types of tests for evaluating proficiency andmaking decisions about
students, specifically:

– Tests for selecting students. An example is the examination a student has to pass
in order to be admitted to further education, such as succeeding in the national
examination for HAVO or VWO, with special requirements regarding the subjects
that have been chosen, as a condition for acceptance to higher education.

– Tests for classifying students. Examples are the end of primary school tests. The
results of the tests indicate what type of secondary education is best suited for a
student.

– Tests for placement. An example is placement in special education. The results
of the student monitoring systems are one indicator used to place a student in
special education. For special education placements, these results must show that
a student’s growth is below the growth onemight expect for a student at a particular
age.

– Tests for certification. The best-known certification test in the Netherlands is the
national examination at the end of secondary education.

16.3.3 Tests to Evaluate Proficiency and Make Decisions
About Classes and Schools

Tests to evaluate proficiency of students can also be used to evaluate classes and
schools. Class growth is central in making decisions about classes. When making
these decisions several questions come up. What is the relationship between an
increase in ability of a class and the past scores of this class? How is the increase
in ability of a class compared to the national increase? But it is also possible to
compare the current improvementwith previous increases in abilitywithin one school
population. How does the improvement of this year’s Grade 2 class compare to that
of last year’s Grade 2? The Cito LOVS incorporates these analyses. Appendix B
illustrates and explains a trend analysis at school level.

16.3.4 Tests to Evaluate Proficiency and Make Decisions
About the Quality of Education

Schools, school organisations, and also the education inspectorate can evaluate the
quality of education. National and international assessments are used to evaluate the
quality of education.

An example of a national assessment carried out by Cito is PPON.6 This assess-
ment is used to evaluate primary school education in detail every five years.

6Periodieke Peiling van het Onderwijsniveau (Periodic Assessment of the Education Level).
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Information from this study is used by content experts and decision makers (Béguin
& Ehren, 2010). The last PPON for mathematics, carried out in 2011, evaluated 22
different mathematical sub-domains (Scheltens, Vermeulen, & VanWeerden, 2013).
In 2014, the responsibility for PPON-like national assessment shifted from the Min-
istry of Education to the Inspectorate of Education. This change of responsibility
will lead to some differences in approach, but the necessity of a national assessment
is beyond dispute.

Examples of international assessments are PISA and TIMSS. PISA (the Pro-
gramme for International Student Assessment) takes place every three years and
compares the knowledge and abilities of 15-year-olds in reading, mathematics, and
science (Kordes, Bolsinova, Limpens, & Stolwijk, 2013).

The Netherlands also participates in TIMSS (Trends in International Mathemat-
ics and Science Study). TIMSS takes place every three years in Grade 4 and 8
and assesses mathematical and science skills. Like in PISA, Dutch students score
on average significantly higher than the international average (Meelissen et al.,
2012). Table 16.1 summarises the different functions of the most commonly used
mathematics tests.

16.4 Use of Tests for Accountability

In the Netherlands, test scores are important for educational accountability. In addi-
tion to test evaluations, schools are evaluated by school inspectors who visit the
schools. As the Inspectorate of Education is required by law to assess the educa-
tional quality that schools offer (including whether the school offers a safe learn-
ing environment to students), tests and annual reports are assumed to measure the
quality of the school’s educational process. The inspectorate uses test scores to iden-
tify low-quality schools. Schools that have declining test scores or low test scores
over a period of three years are considered to be failing or at risk of failing (Béguin
& Ehren, 2010).

Based on the summative or formative function of the tests, it can be assumed
that they are valid for measuring the proficiency of an individual student. However,
this is not necessarily the case for the aggregated results that are used to indicate
educational quality at the school level. Two aspects are important. First, aggregated
results as an indicator can misrepresent educational quality if parts of the curriculum
are not represented in the tests at hand. For example, the student monitoring tests
for primary education do not contain rather open problems in which the student is
asked to combine different (mathematical) skills to reach a solution. Nevertheless, a
relatively low score in the student monitoring test can still be validly interpreted as a
potential lack of quality. Second, one can argue that a test that is a valid measurement
of individual students must have different characteristics and content than a test that
measures schools (Béguin & Ehren, 2010).
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16.4.1 Primary Education

Until recently, the Inspectorate of Education used interim results on the student
monitoring system and an end of primary school test as indicators to evaluate the
proficiency of primary schools. A new framework for accountability has been avail-
able since 2016. This framework focusses on how schools use their test results. The
inspectorate no longer sets standards for the interim results of the student monitoring
system, but standards are still used for the end of primary school tests (OCW, 2016).

16.4.2 Secondary Education

Since 2016, the Inspectorate of Education has used indicators to judge the quality of
a secondary school. First, the inspectorate compares the level of third-year secondary
students (Grade 9) to the secondary school track advice that was given at the end
of primary school. Next, the inspectorate looks at the percentage of students that
pass the first year of secondary school without delay and the percentage of students
that pass the last part of secondary school without delay. Finally, the results of the
national examination are taken into account. These indicators are compared to a
standard established by the inspectorate. The combination of the values achieved
on these indicators form a score for the school as a whole. Each of the components
contributes to this score and overall it is a balanced system (OCW, 2015). The basic
idea of this system of judgement is that schools might do better at one component but
worse at another and that this compensates. So if, for example, a school challenges
students to achieve a higher level of education than advised, the average scores of
these students on the national final examinations can potentially be lower than the
scores of students who follow the advised level of secondary school. This will affect
the school’s indicator for results on the national examinations. Also, it is possible
that these students might even need an extra year to finish their secondary education.

16.5 Discussion

16.5.1 Content-Related Issues

16.5.1.1 Testing with or Without Context

Dutch mathematical education has a strong tradition of Realistic Mathematics
Education (RME). Mathematics has to be learned in meaningful situations. In the
last ten years, a group of experts in mathematics education has advocated for more
attention to learning algorithms, teaching fixed procedures for every operation, and
teaching mathematics in less meaningful situations. This group has written their
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own primary education textbooks. As schools have autonomy, they are free to use
an RME-based textbook or a mechanistic algorithm-based textbook (or something
between the two). This also has consequences for the tests. Today’s assessments con-
tain context problems as well as bare number problems. Nevertheless, schools may
vary in the attention they pay to bare number problems and context problems. There-
fore, it is possible that there are differences in the extent to which the assessments
measure what is actually taught in the school.

Another point about RME is that, in problems that relate to real situations, students
are facedwithmore complex situations inwhich differentmathematical competences
have to be combined. In tests, however, different competences are tested in isolation.
This is partly because tests have to determine whether there are any gaps in mathe-
matical skills. In order to determine this, it is necessary that each question focusses
on one particular competence. This is because in more complex computational prob-
lems, the outcome is less clear and analysis is more difficult for teachers, making the
results less reliable.

16.5.1.2 Should Mathematics be a Compulsory Subject?

In the Dutch educational system, in the lower grades of secondary education all
students at each level must do mathematics, but this does not continue through the
end of secondary education. In the pre-university secondary school track (VWO),
all students are required to do mathematics. For the other levels, mathematics is not
obligatory. So, the system requires that pre-university students know about mathe-
matical relations and be able to do some mathematical thinking at a certain level, but
for the majority of secondary students, mathematics is an elective. One could ask
oneself what this means for society as a whole: will this lead to a social gap (or an
increase in an existing gap) between university-educated citizens and others?

16.5.2 Use of Test Scores

Almost all tests, whether monitoring tests, diagnostic tests, or examinations, provide
information about student progress towards content standards. In all these cases,
mathematical ability is expressed as a value, for example, an ability score. To ascertain
whether a student has obtained a content standard, these standards are connected to
an ability score. This is a convenient and effectiveway to accesswhether a student has
attained a particular standard. A disadvantage of this procedure is that mathematical
ability is squeezed into one value. If a student scores strongly in one domain, this
may compensate for a weakness in another domain. Therefore, students may pass a
certain content standard according the test without mastering the specific goals of all
the reference standards because they exceed the standards in some other domains.
A passing score, therefore, should always be considered into the light of a domain
analysis. If a student scores equally (well) in all domains, it may be concluded with
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reasonable certainty that he or she has mastered the skills described in the reference
standards. If the student scores relatively poorly in one or several domains, it is
advisable to review the points from the ambition level reference standards in order
to establish whether there are gaps to work on with the student.

16.5.3 Use of Tests

16.5.3.1 Autonomy Versus Control

Schools in the Netherlands have the freedom to organise their own teaching pro-
gramme. As a consequence, they have to account for their choices, for example to
the school inspectors. This accountability policy places pressure on schools; they are
busy fulfilling all necessary requirements. As a result, autonomy is not what schools
experience. By focussing on controlling what schools do, and therefore on collecting
test data, there is the risk that the tests partly prescribe the content of the teaching
programme. Schools feel that they are judged by the results of the tests, and so they
will try to achieve the highest scores. For some schools, this means that the tests
determine what they emphasise in their teaching. In these cases, the school does not
autonomously decide what they offer their students, but, to put it bluntly, the teaching
programme is dictated by the tests.

16.5.3.2 Resistance Against Testing

Asmentioned above, schools experience a lot of pressure from testing. Since primary
education assessment occurs twice a year for about six subjects, it takes two weeks
a year to administer these tests. In addition to that, the use of the student monitoring
system is often seen as ‘testing for the school inspectors or the school board’ rather
than a monitoring system for students. It is very counterproductive to use these tests
for accountability.

Another type of resistance is against tests for pre-schoolers. As most Dutch chil-
dren enter primary school at the age of 4 (attending school is required from age 5 on),
there is a monitoring system for these young students, too. For mathematics, these
tests measure some elementary knowledge of numbers, such as the ability to count,
adding small collections of objects, and knowledge of mathematics-related terms
such as long(er), short(er), first, and last. Like all monitoring tests, these tests are
also ability tests. As a result, the test contains questions that the average student can
do well, but it also includes questions designed for lower- and higher-than-average-
level students. Since the test includes questions for themore proficient students, some
of these assignments demand more than strictly required for the average-level goals.
Especially when dealing with young children, this calls for a lot of discussions with
teachers. On the one hand, they want to give their students an experience of success,
thus, they want their students to pass as many questions as possible. On the other
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hand, teachers often talk about the importance of play for children aged 4 or 5. Some
teachers find that, in order to cover all the topics that are in the tests, they cannot let
the students play as much as they think is necessary for their students’ development.
The message that students are also allowed to make mistakes in the monitoring tests
is a difficult one and has been insufficiently communicated to schools.

16.5.3.3 Teaching-to-the-Test

The main goal of the (monitoring) tests is to monitor the development of students
in order to adjust instruction to their potential and needs. The use of test results to
assess the quality of schools is of minor importance. In actual practice, however,
it seems that the main purpose of the monitoring tests is for external parties to
assess school quality. The result of this is that schools, against all advice, adapt their
teaching to the tests and have their students practise for the test. The consequence
of this is that the expectations of the Inspectorate of Education rise further, since the
average assessment test scores increase. The fact that the average assessment score
increases does not mean that mathematics proficiency has automatically increased.
In this case, the higher assessment scores are the result of more frequent passes of
certain parts of the test, not an indicator that teaching methods in mathematics have
improved overall. To fairly determine student ability, it is necessary to update the
tests frequently. However, this is (very) expensive. In the future, adaptive testing, in
which questions in each test are different for different students, may be one solution.
Teaching aimed at specific test problems would then be less feasible for schools.
Furthermore, schools should be encouraged to keep in mind the real purpose of the
tests.

Teaching-to-the-test is a phenomenon that occurs not just with monitoring tests,
but also, for example, with end of school tests and examinations. In these cases, how-
ever, it is less ‘helpful’ for schools because these types of test are updated annually.
Therefore, teaching to specific assignments is not possible, and, in fact, it is never
advisable.

16.5.3.4 Misuse of Tests

An end of primary school test is administered to ascertain whether a student has
successfully completed the curriculum in order to decide whether he or she is ready
for a certain type of secondary education. Monitoring tests serve a different purpose.
They are, as mentioned, primarily meant to steer teaching efficiently towards stu-
dents’ abilities. However, as ministerial policy on secondary school advice changes,
there is a danger that monitoring tests could be given a different, more serious func-
tion than their original purpose. In 2015, both the time set for administering the end
of primary school test and the aims of this test changed. Before 2015, it was meant
to be an objective test, indicating a direction for a student along with teacher advice.
The test was administered in February, before students had to choose a secondary
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school. A large number of secondary schools required a minimum score on the end
of primary school test for admission. This made this test a very important one for
students and their parents. To avoid misuse of the test, the government decided to
move the time for this test to after students have registered for secondary school.
Now, teacher advice is the primary factor in secondary school choice, and students
can change their choice only when they get a higher than expected score on the end
of primary school test. The result of this is that some secondary schools now require
minimum scores on the students’ monitoring test progress results—again, a misuse,
in this case of the monitoring tests instead of the end of school tests. Schools should
use the monitoring tests only as a means of diagnosis and not as a selection tool. A
positive development is that the results of the monitoring tests are no longer part of
the inspectorate’s evaluation framework. As a result, the emphasis in schools moves
to the primary goal: namely, identifying students’ capabilities and challenges.

16.5.3.5 One Test, Different Functions

On a related point, attention should be given to the use of a test for more than
one purpose. Different types of tests each have their own goal and contribute to the
quality of Dutchmathematics instruction in their ownway. One is aimed at informing
teachers and schools about student ability, while another test provides information
about the school as a whole, and again other tests aim to determine the national level.
As can be seen in Table 16.1, many tests are used for more than one purpose. In
order to facilitate accurate assessments, each test should have its own goal(s) and,
moreover, that goal (or those goals) should be clear for all parties involved. Only in
this way can tests be used for the intended purpose, that is, as a means of improving
education. Ultimately, all tests serve this purpose. Whether a test is meant to tune
teaching to the needs of students or to determine the quality of teaching, all tests
should finally contribute to the best possible education to prepare students for their
future as much as possible.

Appendix A

Sample of items from the Cito End Primary School Test and the Cito Student
Monitoring System Primary School (LOVS).
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Jean and Peter are walking towards the village of Driepas.

How many metres do they have to walk from this sign to Driepas?

A 61 metres C 6100 metres

B 610 metres D 61000 metres

Cito End Primary School Test (2007)

The thermometer indicates 24.9°C. So Wanda will get 24.9% reduction on this comp 

How much reduction will Wanda get, roughly speaking?

A    € 50.– C € 300.–

B   € 250.– D € 400.–

Cito End Primary School Test (2007)
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Mother takes a pieceofpie.

Which fraction of the pie is this?

Cito Student Monitoring System, Grade 4 (2009)

Romy wins first prize. She gives her four best friends €100 each.

How many Euros are left?

€ ______________

Cito Student Monitoring System, Grade 4 (2009)
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Appendix B

School level analysis based on the scores in the Cito Student Monitoring System
Primary School (LOVS).

TheCitoLOVScontains a digitalmodule providing a school analysis. Thismodule
produces different reports with an overview of the results on school level. Two
different types of trend analysis can be made: trend analysis of year groups and
of students.

The trend analysis of year groups answers the question: How are the results of this
year’s Grade 3 (or 1, 2, etc.) compared to the results of Grade 3 (or 1, 2, etc.)
in previous years? In this analysis comparisons are made of different groups of
students. Answering this question can be effective for monitoring the effect of a
change in teaching approach, like an increase in attention for mathematical fluency.
If the results of this year’s Grade 3 are better than those of previous years, the school
can confirm that the change has been effective. When the results of Grade 3 were
above average this year and below average last year (horizontal lines indicate the
average score), the school has an indication that mathematics education needs more
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attention. The school can then search for an explanation for this downturn. Has there
been a change in student population? Or is a change of teacher a possible (part of
the) explanation?

The trend analysis of the students’ scores answers the question: How are the results
of the students in Grade 3 compared to the results of these students when they were
in Grade 2 and in Grade 1? This analysis follows the same group of students. If a
group starts in Grade 1 and their scores are above average, one can also expect above
average scores in Grades 2 to 4, assuming an average growth. The graph in Trend
Analysis Students, shows a group of students scoring below average inGrades 1 and 2
and above average in Grade 3. This shows the growth of this is above average. School
can use this information to identify successful factors in their education. What are
causes of this growth? Is it due tomore attention and time tomathematics in Grade 3?
Or is it the effect of a teacher-training programme? Identifying the cause of successes
helps schools identify the strengths in their educational approach. The trend analyses
identify weak and strong points in education, providing ideas to (further) improve
school quality.
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Appendix C

Example from national examination Mathematics A (Pre-university Track of
Secondary Education, 2014).

The population of Uganda

In 2012, Wali published a study into the population size of the African country of
Uganda. According to Wali, this size can be described by a model of the form:

UW = a

1 + b · gt

Here, UW is the number of inhabitants of Uganda and t is the time in years with t =
0 in 1980. Wali used the values a = 295,267,612, b = 22.78367259 and g = 0.965.
In the table, you can see that for the years 1980–2010 his model produced values for
UW that matched surprisingly well with the actual values.

Years Actual
population

Calculated
population

Years Actual
population

Calculated
population

1980 12,414,719 12,414,719 1996 21,248,718 21,266,298

1981 12,725,252 12,845,405 1997 21,861,011 21,980,197

1982 13,078,930 13,290,330 1998 22,502,140 22,716,074

1983 13,470,393 13,749,915 1999 23,227,669 23,474,471

1984 13,919,514 14,224,592 2000 23,955,822 24,255,934

1985 14,391,743 14,714,799 2001 24,690,002 25,061,014

1986 14,910,724 15,220,984 2002 25,469,579 25,890,262

1987 15,520,093 15,743,605 2003 26,321,962 26,744,234

1988 16,176,418 16,283,127 2004 27,233,661 27,623,485

1989 16,832,384 16,840,024 2005 28,199,390 28,528,571

1990 17,455,758 17,414,779 2006 29,206,503 29,460,048

1991 18,082,137 18,007,881 2007 30,262,610 30,418,471

1992 18,729,453 18,619,830 2008 31,367,972 31,404,390

1993 19,424,376 19,251,129 2009 32,369,558 32,418,352

1994 20,127,590 19,902,293 2010 33,398,682 33,460,902

1995 20,689,516 20,573,841

Some people were impressed by the degree of agreement between the two series of
numbers. “Nowhere does the model deviate more than 2% from reality”, one of them
said.
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Question 1 
Using a calculation, demonstrate that this statement is incorrect by giving a year in which
the deviation exceeds 2%. 
It is not practical when the constants of a model have many digits in front of or after the 
decimal point. In the sequel of this problem, we therefore work with the following model:

Here, U is the number of inhabitants of 
Uganda in millions and t is the time in 
years with t = 0 in 1980. 

In the figure, you can see that the model 
predicts a limit value for the population 
size of Uganda. The horizontal axis runs 
from 1980 to 2280. 

Figure 

Question 2 

Explain, without substituting numbers 
into the formula, which limit value goes 
with this model. 
For the derivative of U one has: 

Question 3 

Demonstrate this. 

Question 4 

With the aid of the derivative, 
investigate in which year the population 
of Uganda increases fastest according to 
the model. 
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The population of Uganda – marking scheme

1 maximum score 3

• A calculation of a percentage greater than 2, for example for 1983:
13749915−13470393

13470393 · 100% ≈ 2.1%

2

• In 1983 the model deviates by more than 2%, hence the statement is incorrect 1

2 maximum score 3

• For large t, 0.965t approaches (arbitrarily close to) 0 1

• Then the denominator approaches 1 1

• Then U approaches to 300 million 1

3 maximum score 4

• [0.965t ]′ = 0.965t · ln(0.965) 1

• dU
dt = (1+22.8·0.965t )·0−300·22.8·0.965t ·ln(0.965)

(1+22.8·0.965t )2
2

• dU
dt = −300·22.8·0.965t ·ln(0.965)

(1+22.8·0.965t )2
≈ 244·0.965t

(1+22.8·0.965t )2
1

or

• U = 300(1 + 22.8 · 0.965t )−1 1

• [0.965t ]′ = 0.965t · ln(0.965) 1

• dU
dt = −300(1 + 22.8 · 0.965t )−2 · 22.8 · 0.965t · ln(0.965) 1

• dU
dt = −300·22.8·0.965t ·ln(0.965)

(1+22.8·0.965t )2
≈ 244·0.965t

(1+22.8·0.965t )2
1

4 maximum score 4

• The maximum of the derivative needs to be determined 1

• Describing how with the GC can be determined for which t this derivative is maximal 1

• t ≈ 87.8 1

• The answer: in 2067 (or 2068) 1

Appendix D

Example from national examination Mathematics B (Higher Secondary Education,
2014).

Two Functions

The functions f and g are given by f (x) = (x + 2)
√

x + 2 and g(x) = x(x + 2)

The graphs of f and g intersect in the points A and B.

1 Determine the x-coordinates of A and B exactly.

Point C lies on the graph of f. The tangent line to the graph of f at C has slope 6.

2 Determine the x-coordinate of C exactly.
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Two functions – marking scheme

1 maximum score 4

• From x(x + 2) = (x + 2)
√

x + 2 it follows that x = −2 or x = √
x + 2 1

• 1x = √
x + 2 gives x2 = x + 2 (with x ≥ 0) 1

• Describing how the equation x2 = x + 2 (with x ≥ 0) can be solved exactly 1

• (The x-coordinates of A and B are) x = −2 and x = 2 1

Remark: If x = −1 is named as a solution of the equation, award a score of no more
than 3 points.

2 maximum score 5

• f (x) = (x + 2)1
1
2 1

• f ′(x) = 1 1
2 (x + 2)

1
2 (or a comparable form) 1

• For the x-coordinate of C one has 1 1
2 (x + 2)

1
2 = 6 1

• From this it follows that (x + 2)
1
2 = 4 (i.e.,

√
x + 2 = 4) 1

• This gives x + 2 = 16 hence x = 14 1

Example from national examination Mathematics B (VWO National Examination,
2014).

Fractional Trigonometric Function

For every a with a �= 0 the function f a is given by: fa(x) = sin(ax)

1−2 cos(ax)

1Determine forwhich values of a the linewith equation x = π is a vertical asymptote
of the graph of fa

2 Prove that the graph of f2 is symmetric about the point ( 12π, 0)

Fractional trigonometric function—marking scheme

1 maximum score 4

• One must have: 1 − 2 cos(aπ) = 0, hence cos(aπ) = 1
2 1

• This gives aπ = 1
3π + k · 2π or aπ = − 1

3π + k · 2π (for integer k) 1

• Hence a = 1
3 + k · 2 of a = − 1

3 + k · 2 (for integer k) 1

• For these values of a one has sin(aπ) �= 0 (hence, for these values of a the line with
equation x = π is a vertical asymptote of the graph of fa)

1

Remark: If only the solutions 1
3 and − 1

3 are found, award a maximum of 2 score
points for this question.

2 maximum score 5

• One needs to prove that f2(
1
2π − p) = − f2(

1
2π + p) (for every p) 2

(continued)
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(continued)

• f2(
1
2π − p) = sin(π−2p)

1−2 cos(π−2p)
and f2(

1
2π + p) = sin(π+2p)

1−2 cos(π+2p)
1

• (sin(π − 2p) = sin(2p) and sin(π + 2p) = − sin(2p), hence)
sin(π − 2p) = − sin(π + 2p)

1

• (cos(π − 2p) = − cos(2p) and cos(π + 2p) = − cos(2p), hence)

cos(π − 2p) = cos(π + 2p) (hence f2(
1
2π − p) = − f2(

1
2π + p) for every p)

1

Remark: If a value is substituted for p, do not award any score points for this question.

Appendix E

Example from national examination mathematics (Lower Secondary Education,
2014).

Radio Mast

The radiomast of Radio Luxembourg is located inHosingen, Luxembourg. The radio
mast is 300 m tall.

The radio mast is held up from three sides by three guy-wires from each side. See
the picture.

The three guy-wires from one side are all anchored to the ground at one and the
same point. The distance from the foot of the radio mast to this point is 110 m. In the
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drawing on the right you see the radio mast together with the highest and the lowest
guy-wires.

1 The highest guy-wire is attached to the radio mast at a height of 270 metres. 
 Determine how many metres the length of the highest guy-wire is. Write down your 

calculation. Round your answer to the nearest whole number. 
2 The lowest guy-wire is attached to the radio mast at a height of 120 metres. 

 Determine how many degrees the angle between the lowest guy-wire and the ground is.
Write down your calculation. 

3 The guy-wires are anchored to the ground at equal distances from the radio mast. 
On the worksheet a map of the three anchor points is shown. 

 Indicate the place of the radio mast with a dot on the map. Show how you have obtained
your answer. 

4 The radio mast can be seen from miles around. Agatha wants to know the distance to the
radio mast. She stretches her arm and indicates the size of the radio mast with her fingers. 

The distance from her eye to her fingers is 
50 cm. The height she indicates with her 
fingers is 4 cm. You see a sketch of the 
situation. 

 Determine the distance from Agatha to the radio mast in whole metres. Write down your
calculation. 

Radio mast—marking scheme

1 maximum score 3

• The length of the highest wire is equal to
√
2702 + 1102 = 291.5 . . . (m) 2

• This is equal to 292 (m) when rounded to the nearest whole number 1

2 maximum score 3

• tan angle = 120
110 2

• The answer: 47(°) (or more accurately) 1

3 maximum score 3

• For example, two medians drawn correctly 2

(continued)
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(continued)

• The place of the radio mast has been indicated in the correct position. 1

4 maximum score 2

• A ratio table such as

horizontal distance 50 … 
height 4 300 

1

• The distance is equal to 3750 (m). 1
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Chapter 17
There Is, Probably, No Need for Such
an Institution—The Freudenthal
Institute in the Last Two Decades
of the Twentieth Century

Jan de Lange

Abstract In the 1970s, IOWO became well-known in the mathematics education
community. IOWO was an institute for the development of mathematics education,
with Professor Hans Freudenthal as flag bearer and source of inspiration. For purely
political reasons the government decided that therewas no need for such an institution
in the 1980s, and that all collaborators should move to SLO, the institute in the
Netherlands that is responsible for curriculum development. Most people refused
to accept this offer. Many letters were written by our international colleagues in
order to let IOWO survive. The politicians found a very creative solution: five people
were allowed to carry on within the university as researchers (only). In this chapter, I
describe how the remaining people took backwhatwas ‘stolen’ from them.Within ten
years the government found that a new very successful institute had been established,
and evenwas ‘proud’ of this institute for its innovative ideas, and practical uses, based
on developmental research.

17.1 Introduction

In 1980 the institute named IOWO1 was threatened in its existence. The Ministry of
Educationhad concluded that “therewas noneed for such an institution.”Many letters
from colleagues all over the world convinced our government that they should insert
the word ‘probably’. So, five researchers, supported by three administrative staff,
were relocated in a small institute, OW&OC,2 as part of the Faculty of Mathematics
of Utrecht University.

1Instituut voor de Ontwikkeling van het Wiskunde Onderwijs (Institute for the Development of
Mathematics Education).
2Onderzoek Wiskundeonderwijs en Onderwijs Computercentrum (Mathematics Education
Research and Educational Computer Centre).
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Hans Freudenthal, who was instrumental in forming IOWO, was extremely disap-
pointed. His expectations were low, at best. But he decided to stay with the ‘sinking
ship’, as long as there was hope. He lived long enough to see how the institute, in
1991 re-named as Freudenthal Institute (FI), not only survived, but blossomed and
grew reaching more than eighty mailboxes at its highpoint early in the 21st century.

Just two years ago, I was invited to reflect onmy career as an educational designer.
It resulted in a talk titled ‘There is, probably, no need for this presentation’ (DeLange,
2016). It took me lots of reflection, but I doubt whether the effort was worth the case.
So, it must be because of my ripe age and wisdom that again I am invited to reflect.
This time on my ‘leadership’ of the FI. That leadership started in 1981 with being
appointed as a coordinator and culminated in becoming professor/director of the
institute in 1989, ending with my ‘retirement’ in 2005.

The reflection in this chapter will be rather impressionistic, but with the best
intentions. I will address:

– The mission: innovation in mathematics education.
– By means of connecting research and practice (developmental research).
– In teams of talented people, ‘organised’ in ways that let them shine.
– Working in a flat, informalmaybe even somewhat chaotic, organisational structure.
– Connecting all players, politicians, scientists, practitioners, textbook authors, using
a variety of dissemination methods.

– By powerful and relevant new ideas.
– Provocative and innovative with vision.
– Reaching out internationally to validate theories.
– Having fun.

17.2 The Mission: Innovation in Mathematics Education

Even before IOWOwas founded, Freudenthal did not hesitate to formulate itsmission
‘to teach mathematics as to be useful’ (Freudenthal, 1968). This was a very relevant
question at that time, because of the rise of New Math.

In 1959 a seminar was held in France (Royaumont) with a great impact on mathe-
matics education over the following decades. According to the report of this seminar,
insight into the structure of mathematics is of fundamental importance for system-
atically directed education. Dieudonné, the famous French mathematician, was very
influential, and proposed to offer the students a completely deductive theory, starting
right from basic axioms. Freudenthal later admitted that not attending Royaumont
was one of the two big mistakes he made in his professional life. The other mistake
he refused to mention.

Many people in and outside theNetherlands had similar feelings about themission
of the FI and contributed to it. We name a few.

The structure of mathematics is a beautiful edifice, but I do not think there was one student
who shared that opinion (Vredenduin, in Goffree, 1985).
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Vredenduin made this remark after designing a course as intended by Royaumont,
which failed in the classroom.

To know mathematics means to be able to do mathematics: to use mathematical language
with some fluency, to do problems, to criticize arguments, to find proofs, and, what be the
most important activity, to recognize a mathematical concept in, or to extract it from, a given
concrete situation (Ahlfors et al., 1962, p. 8).

The problem is not what kind of mathematics, but how mathematics has to be taught. In its
first principles mathematics means mathematizing reality, and for most of its users this is
the final aspect, too (Freudenthal, 1968, p. 7).

What didactical phenomenology can do is prepare the following approach: starting from
those phenomena that beg to be organized and from that starting point teaching the learner
to manipulate these means of organizing (Freudenthal, 1983, p. 28).

If we look back, it is clear for me (joining the institute in 1976) that the mission can
be phrased as:

To develop theories about how to teach mathematics as to be useful, and develop materials
that fit these theories and allow teachers and learners to learn mathematics in this way.

17.3 By Means of Connecting Research and Practice
(Developmental Research)

As a consequence of the just mentioned mission, it seems logical that the methodol-
ogy should be the approach of developmental research (Freudenthal, 1991; Treffers,
1987). It is research with an important development component. It is not merely
established how things are in existing education, but much more how things should
be, and one develops education that suits these findings in a theoretical and practical
sense (Treffers, 1993). One can also change the order; if one wants innovations in
education, the process starts somewhere with design fitting the existing theoretical
basis, but also ready to adjust these theories as experiments and experiences dictate.
In both cases development and research take place in an integrated, iterative cyclic
process (Gravemeijer & Cobb, 2006).

Educational design and development and research is a genre of research in which
the iterative development of solutions to practical and complex educational prob-
lems also provides the context for empirical investigation, which yields theoretical
understanding that can inform the work of others (McKenney & Reeves, 2012). At
the FI the big problem in this respect is the place of correct and fitting methodology.
As a developmental researcher, you often know ‘for sure’ that something is really
happening. And you have at least proof of its existence. And there is political pressure
as well.

When the new discipline Mathematics A was being developed, a careful exper-
iment was designed within the strict boundary restrictions of the Ministry of Edu-
cation. The project started with pre-experimental design experiments at classroom
scale, went into the next phase with two schools, and thereafter to 10 and 40 schools.
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It may have been declared a success already when working with two schools. The
professionalisation based on these experiments formed the start for the teachers of
the 40 and all remaining schools. Experimental teachers became teacher-trainers,
co-designers and sometimes ended up at the Freudenthal as colleagues, or with Cito,
the Netherlands national institute for educational measurement. Research was car-
ried out on assessment issues and attitudes of students, but whether or not existing
methodological criteria were met, remains a bit vague.

We tried to make the experiments more serious by disseminating results often and
transparently to the teachers’ media, and the commercial publishers. The Nieuwe
Wiskrant, a journal for mathematics teachers was the rather glossy magazine of the
FI, that at its peak reached a large percentage of the target group.

In 1989, as a New Year’s gimmick, I wrote a story De Kamerronde (De Lange,
1989) for our Freudenthal people, by describing a virtual walk through the institute,
and peeking into some rooms. In the remaining part of this chapter I will return to
this walk to illustrate the work at the FI. I will start in Room 5.

Room 5

Four gentlemen, varying in age from medium aged to really very old. The old man distin-
guished himself from the rest by wearing a butterfly tie and looking like a real professor in
every aspect. Almost without saying it seems natural that he is the centre of the discussion.
The subject of discussion is a new article written by him for his newest (and latest) book
with the working title China Lectures. The discussion has two points as its focus: what is
common sense and in which respect is mathematics distinct and different from physics?

Iron feels colder than wood. The earth is flat. Is that common sense? The sun sets and rises
again. Common sense, or bare reality seen from the perspective of the observer? According
to the present text of the draft article, mathematics education needs to be built on common
sense, while in physics education you often have to battle common sense because it is an
obstacle in the conceptual growth of physical concepts. And what to think about chance and
probability in this respect? That is mathematics as pure as it gets, right? But it often collides
with common sense. Although, what actually is common sense?

Is common sense a set of generally accepted agreements and trivialities that makes any
further discussion unnecessary? If this is the case, then this is only valid within a certain
group or at a certain time. Or is it more complex? What about the reasoning part of common
sense? You literally say “the sun sets”, but you know that is not really true. But it is true for
young children.

Mathematics is rooted in common sense, the professor dictates. As an example, he mentions
the natural number.Kids can acquire this conceptwithin the overwhelming streamof physical
and mental activities. Mathematics: just a sniff of common sense, some organisation, and the
development continues, resulting in a better organised common sense. Your common sense
reasons that 2 + 3 is 5 and the area of a rectangle is h × b. Mathematics, without physics,
gives security, trust your common sense.

The discussion continues. Does 2+ 3= 5 really constitute common sense? And area is length
× width as well? And the theorem of Pythagoras? Is spatial orientation based on common
sense?

At the end, the participants make a sub-conclusion: common sense is local, both in time and
place, and it includes reasoning.

The professor mumbles something. He will rewrite the draft. Will be continued.
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Fig. 17.1 Drawings by the
average students

This discussion in Room 5 represents a snapshot of a discussion about the theory of
mathematics education. The practice follows next: another snapshot, slightly longer,
about a teacher, working also at the FI as a designer-researcher, who teaches rather
‘lower-achieving children’.

Her questionwas simple: “Canyoudesign something in the area of trigonometry?”
The resulting booklet was Vlieg Er Eens In: Goniometrie en Vektoren3 (De Lange,
1980a). We had tried it out with ‘average’ level students, but this promised to be
something different. A student’s reaction was: “You have to think, quite often.” So,
based on this experience our expectations were rather low.

Soon it became clear that we were too pessimistic. The so-called ‘low achieving’
students, who are often regarded as not being able to think, read or learn, were
soon completely involved in the problems. The difference with the average group
became quite clear. These students stayed within the context much longer than their
higher scoring friends. An almost trivial example is the reaction of the students
to the following problem: “Somebody jumps with a hang glider from a rock at 10
metres high and reaches 70 m horizontally. Draw this situation at scale.” The average
students drew something like what is shown in Fig. 17.1, while the lower achiever
made more often drawings about the rock. Only later on, did these latter drawings
become ‘naked’ triangles.

Another difference between the two groups was interesting as well. There were
more students at the lower level who were ‘willing’ to think. They were very answer-
oriented and only after discussions with their peers they accepted ‘thinking’ may be
a part of the learning process. And in this respect, we noticed, quite surprisingly, that
the lower achievers outperformed the average students, especially on more complex
problems.

One aspect deserves special attention. How is the transfer from one context to
another? It was one of those hot days in the past summer. The students wanted a
lesson outside, of course. The teacher reacted as desired: “Okay folks, we’re going
outside to measure the height of buildings, towers, signs, lampposts etc.” She gave
the students simple angle measurement instruments, some paper and sandwiches and
told them: “You have to be back in half an hour!”

My first thought was an exclamation “Good Lord”, thinking of my own expe-
riences as a student with outdoor lessons which were not very successful from the
knowledge acquisition point of view. Although we certainly enjoyed eating lots of
ice-cream, pushing girls in the pond, catching ducks and furthermore embarrassing
our female teacher as much as we think was possible.

The teacher invitedme tomake a stroll around the school to observe the students in
the wild. After a slight hesitation, I accepted the invitation. The small park alongside

3Published in English as Flying Through Math: Trigonometry and Vectors (De Lange, 1991).
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the school building proved, not surprisingly, to be a popular area for investigation. The
height of the school, a tree, a lamppost, everything was measured and if the results
were not according to expectations, a discussion followed. What a well-educated
company!

A couple of streets onwards we found a girl, with beautiful blond curly hair,
lying on the ground, neglecting the fact that her blouse was very white indeed. Her
girlfriend was taking care of traffic around the girl with the white blouse. “Fifty-three
degrees”, this latter girl told her friend. “And the distance was ten metres”, said her
girlfriend, carefully watching cars passing by. From down under came the response:
“Then we know the height.” She jumped up again, and asked if they were right. We
both agreed with them. “Okay, let’s do another building or object then.” The teacher
suggested: “Why don’t you measure the fire-brigade ladder.” ‘Oh’, reacted the girl
immediately, “but then we need the cosine.”

At that moment, I almost became emotional. The girls went to the ladder, we to
the school. The ladder measured 12 m. The firefighters had confirmed that the length
was actually 15 m. “Right”, said the girls, “but we have measured to the edge of the
roof, ignoring the piece that was above the edge.”

I am still thinking, after all these years, of the girl in the white blouse (De Lange,
1980b).

17.4 In Teams of Talented People, ‘Organised’ in Ways
that Let Them Shine

When the institutewas reinvented in 1981 therewas an extremely small team, selected
carefully by the successor of Freudenthal, Frederik van der Blij. A careful balance
between primary and secondary education, between somewhat younger and older,
between more theoretical and practical, between more mathematics and social sci-
ences, to name a few. So, in oneway or another these peoplewere considered talented.
But it was also clear that there was no clear scenario on how to make this handful
into a driving force in mathematics education. Reflecting on this starting phase it was
clear that the connections for the pre-1980 years were invaluable. There was almost
no institution left, but the people were still out there, somewhere.

This network, including many teachers, was kept alive, including continuation of
magazines and newsletters to let people know that ‘something’ was still alive and
kicking. That the remaining people were talented, was taken as assumed. They were
the ones that were ‘selected’ to continue the good work, albeit it under very different
circumstances. The institute was now really part of Utrecht University. But it was
still in the same boring office building out of reach of the university. The battle to
stay out of the university’s bureaucracy was fought successfully for a very long time.
The crown on this battle was the building next door that was really of the very best
quality, and where we moved right after the completion of that building. Of course,
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this was much later when we really needed three floors for all those working at the
FI.

The ‘organisation’ was not much of an organisation: primary, secondary and new
technology. Not a breath-taking structure, but it reflected what we did. There was a
lot of freedom and right from day one we had our first big project for five years: the
design of a new Mathematics A curriculum. New money, new people hired, based
on known and proven talents. This team had a daunting task as school experiments
had to start in August 1981, just eight months after the reinvention of the institute.

Luckmay have played a large role here. The bureaucratic work on the new project,
the foundations, had been laid since 1978, including the participation of the ‘old’
pre-1980 institute. So, the announcement of the Ministry of Education that exper-
iments would be carried out starting in 1980 and resulting in a new curriculum to
be introduced in August 1985, nationwide came exactly at the right time (a detailed
description can be found in De Lange, 1987).

It seemed that at least for some time the new institute, suffering under the name
of OW&OC was alive and guaranteed a lifespan of at least five years.

Because of the perceived success of this project an extension became reality.
A similar curriculum for a different student population followed, extending the
lifespan to ten years. We follow the discussion in the starting phase of this project
in Room 1.

Room 1

A buzzing room. Almost heated discussion. Four excited people in a small room. The subject
of all the excitement: the content of the new curricula Mathematics A and B.

As almost usual for experiments with materials for new curricula the big problem is, that
there is more than fits in a curriculum. To cut in an ideal program is difficult. And they agree
on only one thing: there need to be cuts. The teachers say so, the development group (FI
members with teachers), the experts (and there are many of those), and all others involved.
So, the task is simple: what and where to cut?

The experiments started in 1987,which in itself is a smallmiracle as theMinistry of Education
did not consider these experiments necessary as the new curriculum should be similar to the
just newly introduced Mathematics A. But the people of FI knew better. To develop student
materials, to professionalise teachers, to write articles to acquire ownership, to design high
stake tests, to carry out attitude research are essential activities.

The discussion heats up even further. Matrices out? Not a good idea. It is a prime example
of showing modelling aspects of mathematics. Maybe exponential growth out? No, that is
not very wise, give the famous report of the Club of Rome. And how about statistics?

There is no agreement in sight. The discussion remains heated. The time pressure can be
felt.

At the primary level, some very talented people in Room 3 were able to continue
activities in which the institute was very instrumental in a facilitative way.
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Room 3

Somewhat concerned, the gentlemanwith the red-rimmed glasses looked ahead. Hemumbles
a bit hopelessly that he has no clue how to continue the Panama4 project. In the chair opposite
him sits a somewhat young lady who agrees that the situation is a bit foggy. A discussion
at the Ministry of Education had brought clarity, but no transparency, a feeling that many
people have after visiting the department.

The Panama project started in 1981 as a collaboration between different parties with the
goal of professionalisation of those who are working in and for primary school. The whole
project was to be carried out by one person, with some administrative support. The way this
project developed over time show what talented people, given the opportunity to shine, can
do.

A newsletter developed into a leading professional magazine. The conferences that were
organised were always sold out and played a very important role in developments in primary
education in the Netherlands. It was a truly national platform and offered the staff of the
institute a platform to really shine and inspire.

The gentleman with the trendy glasses knows that the institute and the other collaborators
want the project to survive. But there are so many things to do, most of them of a complex
nature. And there is so little money. And politics is so difficult. The Ministry of Education has
been ordered not to fund ‘outside’ projects any more. The budget is going down, the partners
in the project are in reorganisation, the institute is looking for possibilities and money. The
new law on how to organise education-related institutions seems to make matters even more
complex, but that, people say, was one of its intentions anyway.

The shaking of heads makes place for frowns on the foreheads. But the sparkling eyes tell
another story. The upcoming Panama conference has sold out once more.

17.5 Working in a Flat, Informal, Maybe Even Somewhat
Chaotic, Organisational Structure

It’s far better to rely upon a broad base of individuals and leaders who share a common
set of values and feel personal ownership for the overall success of the organization. These
responsible and empowered individuals will serve as much better watchdogs than any single,
dominant leader or bureaucratic structure (Terri Kelly, cited by Kastelle, 2013).

The luxury that reflection offers is that it maymake you clearer about what you did in
your past, more or less intuitively, and just because there seemed to be no other way.
If you start with a handful of people that you know very well, it seems a waste of
time to think of a structure at all. But soon you will find out that however horizontal
or flat, there needs to be a person who is somewhat central. In those years this person
was called ‘coordinator’. Leen Streefland was the first, but after a year he decided
that this suited me more, not realising that this would become another challenge in
itself. How to handle the monotone growth that is so typical for the first 25 years of
the FI since 1980?

4Panama stands for Pabo Nascholing Mathematische Activiteiten (Pedagogical Academy Train-
ing Mathematical Activities). Panama is the Dutch network of mathematics teacher educators for
primary education. One of the activities of Panama is organising the annual Panama Conference.
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To be honest, it never occurred to me that this was a problem. My focus as
coordinator was on new bright ideas and opportunities, and putting talented people
in charge of the actual execution of these plans after we found money. Somewhere.
I think, looking back, that I agreed very much with Kevin O’Connor who stated
in a blog: “All organisational structures are evil; but when you have to, align your
organisation around markets” (O’Connor, 2012).

Well, the markets were our colleagues in research, but even more the teachers and
students. Indeed, there was, with some good will, a weak organisational structure
honouring the tri-partition primary, secondary and new media, but other partitions
played a role as well: from practice to theory and vice versa, to name an important
one. Only much later, when the institute had many more people involved in projects
one could see the first steps to middle management. This of course was in part due to
the fact that the institutewas part of the university. And universities cannot be accused
of embracing flat organisational structures. So, the university structure forced us to
‘unflatten’ the institute to at least a certain level.

So, it is comfortable to reflect at the initial very flat and informal structure. Small
is flat, especially if you have been working together already for some time. The need
for a coordinator emerged from this structure as something ‘natural’.

More consciouswas the battlewithin the university structure against the university.
Let me explain this in a bit more detail. Our building in the early ages was shabby at
best. And the rather chaotic (remember: flat) way we worked fit perfectly with that
building. There were paper and boxes everywhere, and for visitors it was unclear at
which moment they actually entered our offices. All of a sudden, they were in, if
they had not returned already. But we liked our offices very much, because we were
out-of-sight of any university office. We were very much aware that some of our
salaries were taken care of, which was very nice indeed, but for the rest we looked
more like a start-up business, as they are called today ‘free as a bird’.

If we really did something based on an agenda, it was staying out of the bureau-
cracy. And until the end of my directorship, we succeeded quite well. Of course,
we invested heavily in good contacts with the Faculty of Mathematics (trying to
stay away from Social Sciences) and the Rector of the University. Especially after
reaching out internationally, the executives at that level actually started to like us. Of
course, our building was horrible. But just when the owner decided on restoration,
another brand-new office building was erected next to the old building. The connec-
tions and appreciation with the rector and others ensured us a place in this new, fancy
and very representative building. And renewed independence from the university.

We never forget the remark of one of the Secretaries of State for Education after
a visit: “Jan, I really appreciate and am fond of the work of all of you, but you need
a more representative building and entrance!”

Although we had a terribly good time working in these times, my fear of being
eaten by the university was well grounded. Not only has this been proven true after
retiring in 2005, but there is plenty of evidence from other sources. The growing
bureaucracy, moremiddlemanagement, more vertical structure, accountability, irrel-
evance of muchwork, make universities not really a sparkling, innovative, risk taking
environment. I know, reflecting sometimes colours the image. All the better.
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Room 9

The phone rings. The man in the room, seemingly deep in thought with stretched legs on
his office table covered with lots of paper, awakes and grabs the telephone. “Bolivia”, he
mumbles. His legs sweep the table, cleaning it from all papers. His attention is on the phone.
The line is garbled and the Bolivian English does not communicate well with Dutch English.
They, on the other side, want more computers. We were warned by colleagues from the
University of Agriculture in Wageningen: there are always needs for having some hardware
added. For them it was not computers, but Jeeps.

In the meantime, the line before the open door was waiting patiently. They look around the
corner, ever so friendly, but with the signal: we need you. The telephone call ended quite
abruptly after promising some more computers.

The room was quickly taken over by the whole team of the project Being in Charge that is
about how to become in charge of computers. There is a problem. The problem is simple,
the professionalisation course and project are too successful. And now the question is how
to deal with this luxury. We will contact the Ministry of Education.

The discussion switches to theFair Share programmewhich is based onan intelligent tutoring
system. This experimental half-product has been tried out successfully. And the question of
how to proceed next is on the table.

The phone rings. All people look at the man in the room picking up the phone, standing this
time. He listens and says: “Okay.” “The Ministry of Education. They want to talk about the
future of Fair Share”.

17.6 Connecting All Players—Politicians, Scientists,
Practitioners, Textbook Authors—Using a Variety
of Dissemination Methods

“What chaos.” Famous first words exclaimed by yet another Secretary of State for
Education on entering the office building of the institute. She and her company
crawled their way to the director’s office, which was in a similar style, although the
three chairs were made available for seating. Of course, an apology and explanation
were required and offered. But the coffee helped a lot, and soon the discussion was
about mathematics education and the expanding role of the institute in the world.

She was proud of the growing international role and projects in the United States.
Even funds from the National Science Foundation came to the Netherlands. The
question was, of course, whether we should accept it. One could easily argue that
there was still more than enough work to be done in the Netherlands. But on the
other hand, if one really wanted to validate the domain-specific instruction theory
of Realistic Mathematics Education, one should reach outside our small country.
And the higher regions at the university were very supportive as well. An institute
like the FI needed to reach out internationally. Freudenthal himself expressed this
point of view repeatedly when traveling across the borders in his favourite mode of
transportation, a LandRoverDefender. He loved the Spartan jeep quite a bit, although
comfort was lacking. But the discussion about the need for international contacts, and
the desirable and fierce discussions resulting from these, was inspirational indeed.
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As indicated before, teachers were also engaged in many aspects of the work of
the FI. There were repeated interesting discussions with the university about the lack
of academic qualifications of many of the people working at the FI. But the institute
included teachers in more ways than only as colleagues.

There were professional magazines, conferences (Mathematics for All), regular
conferences (Panama Conference, Nationale Wiskunde Dagen5), competitions (A-
lympiad, B-day), school activities (Grote Rekendag6), professionalisation, key posi-
tions in organisations (CIEAEM, ICMI, Mathematical Sciences Education Board,
PISA, the ISTRON Group on mathematical modelling, and so on) and scientific
magazines, to name a few. The hundreds of small applets and the electronic work
environment for mathematics education, and software can also be mentioned.

Commercial textbook publishers and writers were often suggested to use the
material developed by the Freudenthal Institute, free of copyright. In the 1980s, De
Jong (1986) published a report about the success achieved by this dissemination
strategy for primary education. Ten years later it was not difficult to conclude that
similar results were also found in secondary education.

Room 4

An empty room. The New Media project team that should do its work here according to the
note on the doorpost, is on the road. The whole team, including a teacher is at another office,
at the Ministery of Education, then housed in Zoetermeer.

The room is not too big, and is occupied in large part by a huge, circular, white table. In
the corner opposite the entrance is a construction suggesting that we are dealing with new
media here. Around the blessings of the advances in technology sits a team that looks at
least at ease and relaxed. Three quarters of the full circle are occupied by people from the
ministry, and other experts.

The atmosphere is tense. For the team the meeting is very important. Will the department be
satisfied, at least, and maybe even excited? That would bring in more money of course.

The ultimate goal is to carry out professionalisation using new media in a way that would
later became fashionable as blended learning.

You can feel the tension and excitement in the room. Now and then a simple small nod,
sometimes even an affirmative slight smile. “Quite interesting indeed”, says the obviously
most important person at the three-quarter of a circle part of the table. Exactly on time the
session is finished. Other meetings are waiting. Good sign. The most important person stays
in the room a little longer to talk a bit more in detail. The hardware is being dismantled. New
media are a handful indeed. That causes problems at the school level. Should every school
have a system? Plenty of ideas for further development. But they need to leave quickly now,
on to a school to implement and experiment with new media at school level.

5National Mathematics Days.
6Big Mathematics Day.
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17.7 By Powerful and Relevant New Ideas

Figure 17.2 shows a number of problems Freudenthal (1968) presented at the collo-
quiumWhy to Teach Mathematics as to Be Useful, held in Utrecht in 1967, to prove
the fact that it is not so easy to learn that in all these situations the same arithmetical
operation applies. He opened the panel discussion at this colloquium as follows:

Ladies and Gentlemen. I open the panel discussion. First of all, I’ll give a summary of what
I learned these past two days about the ideas of those who dealt with the general theme. I got
the impression that we all agree about fundamentals. We all are convinced, I suppose, that
mathematics has to be taught in way that people can apply it. We are convinced that this goal
cannot be reached by simply teaching applications of mathematics, but that mathematics has
to be related to its applications in a much earlier state, in a closer and more fundamental
way, and that the ability to apply mathematics can only be acquired by starting with students
from situations that have to be mathematised. (see Freudenthal et al., 1968, p. 61)

This can be seen as expressing the philosophy of the very first years of IOWO (1971–
1980), the successful institute that was considered not be useful anymore. It barely
survived the early 1980s with a small team, as described before. It led eventually to
the idea of Realistic Mathematics Education.

This idea was developed in a powerful way by the Wiskobas7 group in the 1970s
already, later to be followedby similar development in secondary schools, andparallel
the development of a more computer-oriented approach in mathematics education.
The plea for more applications in education starting in reality was facilitated through
the projects mentioned earlier (the Mathematics A project), facilitated by politics
and the Ministry of Education.

Another powerful idea that really ‘made’ the FI, was the developmental research
approach. In this way, the research was fed by practice, brought on a higher scientific
level and validated before ‘descending’ again to the practical level. In the meantime,
all kinds of material were developed from complete curricula to beautiful micro
designs, from software to applets, from tasks and tests for classroom assessment to
high-stake tests.

The communication that is part of developmental research also had some relevant
instruments, which were mentioned before.

If I have ten marbles and I give three away, how many are left?
If I have ten marbles, and john has three less, how many does he have?
If there are ten students in the room and three are girls, how many are boys?
If I’m ten years old now, how old was I three years ago?
If B is between A and C, B is at a distance of 7 miles from A, and C is at a 
distance of 10 miles from A, how far is B from C?

Fig. 17.2 Problems presented by Freudenthal

7Wiskunde op de Basisschool (Mathematics in Primary School).
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Room 7

A heavily gesticulating woman, speaking with an accent from down south in the Netherlands,
tries to convince her more business-like colleagues. Not that the emotions rise particularly
high, but the devil is in the details. Tomorrow an important presentation will take place, and
the project needs to be brought out into the open in a very good way.

The research is about comparing what teachers think their students at the beginning of
primary school are able to do, and what they actually can do.

The teachers were quite conservative in their expectations. The students fared much bet-
ter than expected. This finding has great and important consequences, especially from the
perspective of connecting to the reality of students. Do not start at zero if you know your
students are much farther on the ‘number line’ of learning.

The woman is still gesticulating heavily. She is worried about her presentation. Is there time
enough to present everything clear and transparent? Her counterpart, the gentleman, is less
worried. His slides are well laid out, and not too many. He tries to calm down the lady. In
vain, however.

17.8 Provocative and Innovative with Vision

Room 2

Three comfortable chairs, a lady and two gentlemen. They look as if they are thinking
seriously about the task at hand. Indeed, the three have been invited to do a whole morning
presentation at a large conference in the United States. Important points come up in the
discussion: what kind of people will attend (mathematics educators), what do they want
(just about everything, especially concrete examples), how deep will we go into the more
theoretical aspects (not too deep), on which points are we different from U.S. society (in
many more ways than ‘they’ think). But more down to earth matters, like plane tickets, also
come along

They talk a minute or two about a side trip of one of the three to Princeton. There will be a
brainstorm about a favourite subject: higher-order thinking skills. A remarkable initiative
given the tradition of, and love affair with, the multiple-choice format. Multiple choice and
the new experimental Mathematics A exams seem to be light years apart. Lots of text and
context, visuals, open-ended questions, even long-answer-format questions.Okay, looks nice,
maybe higher-order thinking skills, but what about validity and costs?

It is a recurrent theme: tests and tasks, both for primary (Van den Heuvel-Panhuizen,
1996) as well as for secondary education (De Lange, 1987). Consider the discussion
about the end test in primary schools. Highly valued, taken by almost all children
as the direction where to go in secondary education. Multiple choice. In a half-page
interview in one of the quality newspapers in the Netherlands, the person at Cito who
is responsible for this test, battles it out with me, the director of the FI. I argue that
the test is misused as the sole measure of where to place a child within the Dutch
tracking system. Research has shown that the teacher’s advice is a better indicator
for future success. There should be more real-world problem solving in the test and
fewer fanciful illustrations to cheer up the kids. Moreover, I criticise the side effect
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that the last year at primary schools is dedicated to preparing the students to pass the
test: “A whole year lost for test preparation!”

In yet another major article, the discussion focuses on the new Mathematics A
curriculum. I argue: “The test tasks of Mathematics A connect to the student’s real
world, and showmathematics as to be useful”. I alsomade it clear that I am concerned
that the quality of the experimental examswill be difficult tomaintain. The downward
trend has already started. According to me: “The exam fails to meet the principles
and philosophy we developed when developing Mathematics A. Insight in concepts
and creative thinking are rarely present.”

A quotation from another interview makes clear that I am not the only one who
is concerned: “The State Secretary for Education shared our concerns about the
development of the high-stakes tests. She invited us at the Ministry of Education.
‘What to do?’ was her obvious question.” The problem was purely political. A new
law, the same one that declared the FI ‘not needed’, made it virtually impossible to
change practice. The State Secretary was not allowed to fund any project in that vein,
because that task belonged to the Cito. That same law played a huge role in the first
years of the FI as creativity of a purely political nature was the game to play.

It was deemed necessary to distinguish the institute by being different: sometimes
provocative, often innovative, seeking free publicity excelling in communication.
And having excellent ties with different levels at the Ministry of Education, that was
carefully bombarded with an array of novel ideas: new media, new tests for primary
school, comparing textbook results, new curricula (as to be useful), new software,
computer science at school, mathematics for all, A-lympiads, collaboration with
the Dutch association for mathematics teachers, graphing calculators (ready for the
museum right now), cutting edge conferences, international collaboration. Or, in
short: never a dull moment.

And the institute was very lucky to find the press on its side. A whole page article
about the institute stated the philosophy quite well, quoting Freudenthal about the
usefulness of mathematics, and quoting a statement of myself: “What makes us dif-
ferent and innovative is developmental research. In this way, we try to develop a new
educational reality by doing research. Not researching ‘what is’, but ‘what ought to
be’”. And of course, the reporter was happy to quote the well-known American pro-
fessor Romberg: “We are carrying out a ‘robbery’ on the Freudenthal Institute.” This
was his way of announcing a big cooperative project between FI and the University
of Wisconsin at Madison.

17.9 Reaching Out Internationally to Validate Theories

Three people played a major role in the internalisation of the institute, one of my
personal key issues. The first one was Hans Freudenthal himself. Of course, he was
well-known and famous all over the world. Less well known is the fact that he was
verymuch in favour of internalisation, whilemany peoplewithin the institute insisted
on ‘completing’ the national agenda, whatever that means.
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There is the story, playing in the late 1970s, about an invitation to make a pre-
sentation in Brazil, an invitation from Ubiratan d’Ambrosio (no need to say more).
As I had already travelled as far as Norway at the time, people were looking at me. I
immediately said yes. There was a slight problem. The then administrative director
did not approve at all. The coordinator of secondary education talked to Freudenthal
and they concluded I should go anyway. But how tomake that secret operation work?

It happened to be February, so snow abounded in the Alps. So officially I went
skiing. But what about the money? A solution that we all found quite elegant was to
givememore local travel expenses for as long as needed, until my ‘skiing’ costs were
covered. So, I went ‘under cover’ to Brazil, a turning point in internationalisation.

But Freudenthal did more than just carry out and cover travel under the radar.
Quite often when he was invited, especially often to Germany, he invited me to
accompany him, and show examples of our design work. The problem was, in my
opinion, that my car happened to be a crude Land Rover, that was used for a Sahara
trip. For Freudenthal it seemed more like an attraction.

The other two very important people in establishing international projects, were
two famous American scholars: Tom Romberg and Tom O’Brien. Almost at the
same time they approached me for different activities. Tom O’Brien thought that
what happened in the Netherlands was worth spreading in the United States. He
acted as my impresario for an east-west coast tour of the United States, doing many
presentations in places unknown to me.

It was at least quite interesting, and very enjoyable. I did presentations at schools,
at universities, a school boards, at universities, for students and staff, superintendents
and enjoyed diners just to get know important people like Marge Cappo. There were
workshops, lectures, discussions and other formats. They lasted at least 45 min, but
in one case 1.5 days. This was in Montana, where a real reception committee waited
for me at the airport, and I barely survived with the couple of hundred slides that
were to my avail. Rick Billstein and Johnny Lott were in charge of that incredible
event.

TomRomberg approached usmore carefully.Not really the ‘artists entrance’ as the
TO’B tour. Just exploring slowly and carefully to find out if it was worth investing in
the Dutch. He was especially interested in developmental research and ‘mathematics
as to be useful’. He challenged us to design a little unit for use in an American High
School, not far from Madison (meaning one hour by car). The teacher (Gail Burrill,
later president of NCTM) selected the topic of data visualisation (see Fig. 17.3).

For design, flying tickets and observations we got $3000. We realised of course
that this was almost nothing, but … The experiment was declared a success. So,
this time Tom (and Gail) offered $6000 if we designed another unit. No surprise. It
worked quite well. The next phase was a dinner with Tom at his golf club inMadison
(my first time ever). He leisurely informed me that he was happy with the two tiny
experiments: “How about participating in a multi-million dollar National Science
Foundation project?”

It can be considered as the start of many projects, run by many people in a variety
of countries. Not just in Madison, but all over the United States. In Bolivia, South
Africa, Indonesia, Malaysia, to name a few, and participating in studies like TIMSS,
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Fig. 17.3 Page from the unit data visualization

NAEP and PISA. And participating in the Mathematical Sciences Education Board
(MSEB) of the National Research Council, being Secretary of CIEAEM, organising
PME Conferences and an increasing number of colleagues in boards of prestigious
journals.

The argument we used for internationalisation was to validate the theory of Real-
istic Mathematics Education. What came free with the ride was the richness of the
different cultures. And what there was to learn abroad. Little did we realise at that
time that while the way we carry out discussions in our institute (seen as rather
vibrant) may have been a bit frank within the Netherlands, it was sometimes a real
culture shock to see the differences in culture in general and in education. Hopefully
we learned, both ways.
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17.10 Having Fun

What I liked most about the Freudenthal Institute, where I spent most of my profes-
sional life, was the fact that, in reflection, every day seemed to be a fun-day. During
this actual writing activity, one could have seen me smiling most of the time. When
Marja van den Heuvel-Panhuizen asked me to reflect on how the institute worked
in the last two decades of the past century, it did not take much effort to convince
me. Better even, at my ripe old age I decided to attend ICMI 13 in Hamburg. So, I
will confront my reflections with reality of the present state of art on mathematics
education. It will again be FUN!
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